Skip to main content
Log in

Elevated Atmospheric CO2 Reduced Antibiotics Accumulation in Rice Grains and Soil ARGs Abundance in Multiple Antibiotics-contaminated Paddy Fields

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Antibiotic resistance genes(ARGs) as new pollutants have become a global environmental pollution problem in recent years. Elevated atmospheric CO2 is one of the major factors affecting global climate change. But, the impacts of elevated CO2 on soil ARGs in multiple antibiotics-contaminated paddy soils are largely unknown. In this study, six antibiotics including sulfadiazine (SDZ), sulfamethoxazole(SMZ), tetracycline(TC), oxytetracycline (OTC), enrofloxacin(ENR), and ciprofloxacin(CIP) were selected to investigate their combined effects on rice biomass, antibiotics accumulation, soil bacterial community and ARGs under elevated CO2 levels. Results showed that elevated CO2 significantly reduced the accumulation of SMZ, OTC, ENR, and CIP in rice grains by 18.98%, 20.07%, 41.73%, and 44.25%, respectively. Elevated CO2 could affect soil microbial β-diversity, and tend to reduce the microbial functions of human diseases, organismal systems, and genetic information processing. In addition, elevated CO2 significantly decreased the abundance of sulfonamide ARGs, tetracycline ARGs, and quinolone ARGs by 19.59%, 18.58%, and 28.96%, respectively, while increased that of multidrug ARGs by 11.54%. Overall, this study emphasized that elevated CO2 may mitigate the threat of antibiotics contamination to rice food security but aggravate the environmental risk of multidrug ARGs in soil, contributing to a better understanding of the consequences of elevated CO2 levels on food security and soil ecological health in multiple antibiotics-contaminated paddy fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarmah A. K., Meyer M. T., Boxall A. B. A., Chemosphere, 2006, 65, 725

    CAS  PubMed  Google Scholar 

  2. Jiang H. Y., Zhang D. D., Xiao S. C., Geng C. N., Zhang X., Environ. Sci. Pollut. Res., 2013, 20, 9075

    CAS  Google Scholar 

  3. Haller M. Y., Muller S. R., McArdell C. S., Alder A. C., Suter M. J. F., J. Chromatogr. A, 2002, 952, 111

    CAS  PubMed  Google Scholar 

  4. Zhao L., Dong Y. H., Wang H., Sci. Total Environ., 2010, 408, 1069

    CAS  PubMed  Google Scholar 

  5. Li Y. W., Wu X. L., Mo C. H., Tai Y. P., Huang X. P., Xiang L., J. Agric. Food Chem., 2011, 59, 7268

    PubMed  Google Scholar 

  6. Hu X. G., Zhou Q. X., Luo Y., Environ. Pollut., 2010, 158, 2992

    CAS  PubMed  Google Scholar 

  7. Prosser R. S., Sibley P. K., Environ. Int., 2015, 75, 223

    CAS  PubMed  Google Scholar 

  8. Moore S. K., Trainer V. L., Mantua N. J., Parker M. S., Laws E. A., Backer L. C., Fleming L. E., Environ. Health, 2008, 7, 12

    Google Scholar 

  9. IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to The Fifth Assessment Report of The Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2014, 151

  10. Duval B. D., Dijkstra P., Natali S. M., Megonigal J. P., Ketterer M. E., Drake B. G., Lerdau M. T., Gordon G., Anbar A. D., Hungate B. A., Environ. Sci. Technol., 2011, 45, 2570

    CAS  PubMed  Google Scholar 

  11. Grover M., Maheswari M., Desai S., Gopinath K. A., Venkateswarlu B., Appl. Soil Ecol., 2015, 95, 73

    Google Scholar 

  12. Sanchez-Carrillo S., Alvarez-Cobelas M., Angeler D. G., Serrano-Grijalva L., Sanchez-Andres R., Cirujano S., Schmid T., Ecosystems, 2018, 21, 852

    CAS  Google Scholar 

  13. Xu M. L., Zhu Y. G., Gu K. H., Zhu J. G., Yin Y., Ji R., Du W. C., Guo H. Y., Environ. Sci. Technol., 2019, 53, 11714

    CAS  PubMed  Google Scholar 

  14. Ai F. X., Eisenhauer N., Jousset A., Butenschoen O., Ji R., Guo H. Y., Sci Rep, 2018, 8, 9

    Google Scholar 

  15. Du W. C., Gardea-Torresdey J. L., Xie Y. W., Yin Y., Zhu J. G., Zhang X. W., Ji R., Gu K. H., Peralta-Videa J. R., Guo H. Y., Sci. Total Environ., 2017, 578, 408

    CAS  PubMed  Google Scholar 

  16. Guo H. Y., Zhu J. G., Zhou H., Sun Y. Y., Yin Y., Pei D. P., Ji R., Wu J. C., Wang X. R., Environ. Sci. Technol., 2011, 45, 6997

    CAS  PubMed  Google Scholar 

  17. Xu F., Du W. C., Carter L. J., Xu M. L., Wang G. B., Qiu L. L., Zhu J. G., Zhu C. W., Yin Y., Ji R., Banwart S. A., Guo H. Y., Sci. Total Environ., 2021, 754, 9

    Google Scholar 

  18. Liao J. Q., Huang H. N., Chen Y. G., Environ. Int., 2019, 129, 333

    CAS  PubMed  Google Scholar 

  19. Chen Z. J., Zheng Y., Ding C. Y., Ren X. M., Yuan J., Sun F., Li Y. Y., Ecotox. Environ. Safe., 2017, 145, 111

    CAS  Google Scholar 

  20. Wang G. B., Zhang Q. Q., Du W. C., Ai F. X., Yin Y., Ji R., Guo H. Y., Sci. Total Environ., 2021, 769, 10

    Google Scholar 

  21. Shi L. M., Zhang J. Y., Lu T. D., Zhang K. C., Sci. Total Environ., 2022, 817, 11

    Google Scholar 

  22. Anderson M. J., Willis T. J., Ecology, 2003, 84, 511

    Google Scholar 

  23. Wang B., Cai W. W., Li J. L., Wan Y. F., Li Y. E., Guo C., Wilkes A., You S. C., Qin X. B., Gao Q. Z., Liu K. W., Field Crop. Res., 2020, 248, 11

    Google Scholar 

  24. Yu X. L., Liu X. X., Liu H., Chen J. H., Sun Y., Environ. Pollut., 2019, 254, 8

    Google Scholar 

  25. Qi X. F., Wang X. H., Wang Q., Li M., Ma L. J., Li Y. Y., Li X. M., Wang L. L., Appl. Ecol. Environ. Res., 2021, 19, 3773

    Google Scholar 

  26. Feng X. J., Simpson A. J., Schlesinger W. H., Simpson M. J., Glob. Change Biol., 2010, 16, 2104

    Google Scholar 

  27. Li S., Hu J. Y., Water Res., 2018, 132, 320

    CAS  PubMed  Google Scholar 

  28. Cycon M., Mrozik A., Piotrowska-Seget Z., Front. Microbiol., 2019, 10, 45

    Google Scholar 

  29. Zhang X., Li J., Fan W. Y., Yao M. C., Yuan L., Sheng G. P., Environ. Sci. Technol., 2019, 53, 10732

    CAS  PubMed  Google Scholar 

  30. Prior S. A., Runion G. B., Rogers H. H., Torbert H. A., Reeves D. W., Glob. Change Biol., 2005, 11, 657

    Google Scholar 

  31. Terrer C., Jackson R. B., Prentice I. C., Keenan T. F., Kaiser C., Vicca S., Fisher J. B., Reich P. B., Stocker B. D., Hungate B. A., Penuelas J., McCallum I., Soudzilovskaia N. A., Cernusak L. A., Talhelm A. F., Van Sundert K., Piao S. L., Newton P. C. D., Hovenden M. J., Blumenthal D. M., Liu Y. Y., Muller C., Winter K., Field C. B., Viechtbauer W., Van Lissa C. J., Hoosbeek M. R., Watanabe M., Koike T., Leshyk V. O., Polley H. W., Franklin O., Nat. Clim. Chang., 2019, 9, 684

    CAS  Google Scholar 

  32. Ofiti N. O. E., Solly E. F., Hanson P. J., Malhotra A., Wiesenberg G. L. B., Schmidt M. W. I., Glob. Change Biol., 2022, 28, 883

    CAS  Google Scholar 

  33. Gulkowska A., Sander M., Hollender J., Krauss M., Environ. Sci. Technol., 2013, 47, 6916

    CAS  PubMed  Google Scholar 

  34. Xu J., Hu Y. Y., Li X. Y., Chen J. J., Sheng G. P., Environ. Pollut., 2018, 243, 752

    CAS  PubMed  Google Scholar 

  35. Wu X. Q., Ernst F., Conkle J. L., Gan J., Environ. Int., 2013, 60, 15

    CAS  PubMed  Google Scholar 

  36. Jechalke S., Heuer H., Siemens J., Amelung W., Smalla K., Trends Microbiol., 2014, 22, 536

    CAS  PubMed  Google Scholar 

  37. Liu F., Wu J. S., Ying G. G., Luo Z. X., Feng H., Appl. Microbiol. Biotechnol., 2012, 95, 1615

    CAS  PubMed  Google Scholar 

  38. Ding G. C., Radl V., Schloter-Hai B., Jechalke S., Heuer H., Smalla K., Schloter M., PLoS One, 2014, 9, 10

    PubMed Central  Google Scholar 

  39. Heuer H., Smalla K., Environ. Microbiol., 2007, 9, 657

    CAS  PubMed  Google Scholar 

  40. Ma J. W., Lin H., Sun W. C., Wang Q., Yu Q. G., Zhao Y. H., Fu J. R., Environ. Sci. Pollut. Res., 2014, 21, 7436

    CAS  Google Scholar 

  41. Zhao R. X., Yu K., Zhang J. Y., Zhang G. J., Huang J., Ma L. P., Deng C. F., Li X. Y., Li B., Water Res., 2020, 186, 15

    Google Scholar 

  42. Gutierrez A., Laureti L., Crussard S., Abida H., Rodriguez-Rojas A., Blazquez J., Baharoglu Z., Mazel D., Darfeuille F., Vogel J., Matic I., Nat. Commun., 2013, 4, 9

    Google Scholar 

  43. Gullberg E., Albrecht L. M., Karlsson C., Sandegren L., Andersson D. I., mBio, 2014, 5, 9

    Google Scholar 

  44. Liao J. Q., Chen Y. G., Huang H. N., Environ. Pollut., 2019, 254, 10

    Google Scholar 

  45. Zhu Y. G., Gillings M., Simonet P., Stekel D., Banwart S., Penuelas J., Glob. Change Biol., 2018, 24, 1488

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.21876083, 42177003, 42107004) and the Science and Technology Innovation Program of Jiangsu Province, China(No.BK20220036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Guo.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Supporting information

40242_2023_3043_MOESM1_ESM.pdf

Elevated Atmospheric CO2 Reduced Antibiotics Accumulation in Rice Grains and Soil ARGs Abundance in Multiple Antibiotics-contaminated Paddy Fields

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xu, M., Wang, X. et al. Elevated Atmospheric CO2 Reduced Antibiotics Accumulation in Rice Grains and Soil ARGs Abundance in Multiple Antibiotics-contaminated Paddy Fields. Chem. Res. Chin. Univ. 39, 455–464 (2023). https://doi.org/10.1007/s40242-023-3043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3043-z

Keywords

Navigation