Skip to main content

Advertisement

Log in

Progress of Indeno-type Organic Diradicaloids

  • Review
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Organic diradicaloids have unusual open-shell nature and properties and are promising materials for organic electronics, spintronics, energy storage and nonlinear optics. In this review, we focus on indeno-type organic diradicaloids and summarize their molecular design and synthesis, as well as topological structures, open-shell characters and diradical properties. The molecular systems are classified into indenofluorenes and diindenoacenes, indeno-based molecules with one-dimensional, two-dimensional and unique topological structures, and heterocyclic indeno-based molecules. By constructing these various topological π-skeletons with tunable conjugation modes and variation of atomic composition, their key open-shell parameters, such as diradical characters and singlet-triplet energy gaps, along with the optical, electronic and magnetic properties, as well as stabilities are efficiently modulated. More attention may be paid to accurate computational analysis, rational design and synthesis, and novel functions of indeno-type diradicaloids, which will promote the development of radical chemistry and materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Narita A., Wang X.-Y., Feng X., Müllen K., Chem. Soc. Rev., 2015, 44(18), 6616

    Article  CAS  PubMed  Google Scholar 

  2. Ito H., Segawa Y., Murakami K., Itami K., J. Am. Chem. Soc., 2019, 141(1), 3

    Article  CAS  PubMed  Google Scholar 

  3. Jiang W., Li Y., Wang Z., Acc. Chem. Res., 2014, 47(10), 3135

    Article  CAS  PubMed  Google Scholar 

  4. Stępień M., Gońka E., Żyła M., Sprutta N., Chem. Rev., 2017, 117(4), 3479

    Article  PubMed  Google Scholar 

  5. Yuan L., Guo J., Yang Y., Ye K., Dou C., Wang Y., CCS Chem., 2022, DOI: https://doi.org/10.31635/ccschem.022.202101738

  6. Sun W., Guo J., Fan Z., Yuan L., Ye K., Dou C., Wang Y., Angew. Chem. Int. Ed., 2022, 61(40), e202209271

    CAS  Google Scholar 

  7. Abe M., Chem. Rev., 2013, 113(9), 7011

    Article  CAS  PubMed  Google Scholar 

  8. Kubo T., Chem. Rec., 2015, 15(1), 218

    Article  CAS  PubMed  Google Scholar 

  9. Dressler J. J., Haley M. M., J. Phys. Org. Chem., 2020, 33(11), e4114

    CAS  Google Scholar 

  10. Zeng W., Wu J., Chem, 2021, 7(2), 358

    Article  CAS  Google Scholar 

  11. Chen Z. X., Li Y., Huang F., Chem, 2021, 7(2), 288

    Article  CAS  Google Scholar 

  12. Liu J., Feng X., Angew. Chem. Int. Ed., 2020, 59(52), 23386

    Article  CAS  Google Scholar 

  13. Quintero S. M., Haley M. M., Kertesz M., Casado J., Angew. Chem. Int. Ed., 2022, 61(44), e202209138

    Google Scholar 

  14. Tobe Y., Chem. Rec., 2015, 15(1), 86

    Article  CAS  PubMed  Google Scholar 

  15. Tobe Y., Top Curr. Chem.(Z), 2018, 376(2), 12

    Article  Google Scholar 

  16. Frederickson C. K., Rose B. D., Haley M. M., Acc. Chem. Res., 2017, 50(4), 977

    Article  CAS  PubMed  Google Scholar 

  17. Tschitschibabin A. E., Chem. Ber., 1907, 40(2), 1810

    Article  CAS  Google Scholar 

  18. Montgomery L. K., Huffman J. C., Jurczak E. A., Grendze M. P., J. Am. Chem. Soc., 1986, 108(19), 6004

    Article  CAS  PubMed  Google Scholar 

  19. Chase D. T., Rose B. D., McClintock S. P., Zakharov L. N., Haley M. M., Angew. Chem. Int. Ed., 2011, 50(5), 1127

    Article  CAS  Google Scholar 

  20. Chase D. T., Fix A. G., Kang S. J., Rose B. D., Weber C. D., Zhong Y., Zakharov L. N., Lonergan M. C., Nuckolls C., Haley M. M., J. Am. Chem. Soc., 2012, 134(25), 10349

    Article  CAS  PubMed  Google Scholar 

  21. Chase D. T., Fix A. G., Rose B. D., Weber C. D., Nobusue S., Stockwell C. E., Zakharov L. N., Lonergan M. C., Haley M. M., Angew. Chem. Int. Ed., 2011, 50(47), 11103

    Article  CAS  Google Scholar 

  22. Rudebusch G. E., Zafra J. L., Jorner K., Fukuda K., Marshall J. L., Arrechea-Marcos I., Espejo G. L., Ponce Ortiz R., Gómez-García C. J., Zakharov L. N., Nakano M., Ottosson H., Casado J., Haley M. M., Nat. Chem., 2016, 8(8), 753

    Article  CAS  PubMed  Google Scholar 

  23. Shimizu A., Tobe Y., Angew. Chem. Int. Ed., 2011, 50(30), 6906

    Article  CAS  Google Scholar 

  24. Fix A. G., Deal P. E., Vonnegut C. L., Rose B. D., Zakharov L. N., Haley M. M., Org. Lett., 2013, 15(6), 1362

    Article  CAS  PubMed  Google Scholar 

  25. Shimizu A., Kishi R., Nakano M., Shiomi D., Sato K., Takui T., Hisaki I., Miyata M., Tobe Y., Angew. Chem. Int. Ed., 2013, 52(23), 6076

    Article  CAS  Google Scholar 

  26. Dressler J. J., Zhou Z., Marshall J. L., Kishi R., Takamuku S., Wei Z., Spisak S. N., Nakano M., Petrukhina M. A., Haley M. M., Angew. Chem. Int. Ed., 2017, 56(48), 15363

    Article  CAS  Google Scholar 

  27. Rose B. D., Vonnegut C. L., Zakharov L. N., Haley M. M., Org. Lett., 2012, 14(9), 242

    Article  Google Scholar 

  28. Miyoshi H., Miki M., Hirano S., Shimizu A., Kishi R., Fukuda K., Shiomi D., Sato K., Takui T., Hisaki I., Nakano M., Tobe Y., J. Org. Chem., 2017, 82(3), 1380

    Article  CAS  PubMed  Google Scholar 

  29. Barker J. E., Frederickson C. K., Jones M. H., Zakharov L. N., Haley M. M., Org. Lett., 2017, 19(19), 5312

    Article  CAS  PubMed  Google Scholar 

  30. Hacker A. S., Pavano M., Wood J. E., Hashimoto H., D’Ambrosio K. M., Frederickson C. K., Zafra J. L., Gómez-García C. J., Postils V., Ringer McDonald A., Casanova D., Frantz D. K., Casado J., Chem. Commun., 2019, 55(94), 14186

    Article  CAS  Google Scholar 

  31. Majewski M. A., Chmielewski P. J., Chien A., Hong Y., Lis T., Witwicki M., Kim D., Zimmerman P. M., Stępień M., Chem. Sci., 2019, 10(11), 3413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prajapati B., Dang D., Chmielewski P. J., Majewski M. A., Lis T., Gómez-García C. J., Zimmerman P. M., Stępień M., Angew. Chem. Int. Ed., 2021, 60(41), 22496

    Article  CAS  Google Scholar 

  33. Frederickson C. K., Zakharov L. N., Haley M. M., J. Am. Chem. Soc., 2016, 138(51), 16827

    Article  CAS  PubMed  Google Scholar 

  34. Hayashi H., Barker J. E., Cárdenas Valdivia A., Kishi R., MacMillan S. N., Gómez-García C. J., Miyauchi H., Nakamura Y., Nakano M., Kato S., Haley M. M., Casado J., J. Am. Chem. Soc., 2020, 142(48), 20444

    Article  CAS  Google Scholar 

  35. Dressler J. J., Cárdenas Valdivia A., Kishi R., Rudebusch G. E., Ventura A. M., Chastain B. E., Gómez-García C. J., Zakharov L. N., Nakano M., Casado J., Haley M. M., Chem, 2020, 6(6), 1353

    Article  CAS  Google Scholar 

  36. Hu P., Lee S., Herng T. S., Aratani N., Gonçalves T. P., Qi Q., Shi X., Yamada H., Huang K.-W., Ding J., Kim D., Wu J., J. Am. Chem. Soc., 2016, 138(3), 1065

    Article  CAS  PubMed  Google Scholar 

  37. Kubo T., Yamamoto K., Nakasuji K., Takui T., Tetrahedron Lett., 2001, 42(45), 7997

    Article  CAS  Google Scholar 

  38. Shimizu A., Kubo T., Uruichi M., Yakushi K., Nakano M., Shiomi D., Sato K., Takui T., Hirao Y., Matsumoto K., Kurata H., Morita Y., Nakasuji K., J. Am. Chem. Soc., 2010, 132(41), 14421

    Article  CAS  PubMed  Google Scholar 

  39. Liu J., Ma J., Zhang K., Ravat P., Machata P., Avdoshenko S., Hennersdorf F., Komber H., Pisula W., Weigand J. J., Popov A. A., Berger R., Müllen K., Feng X., J. Am. Chem. Soc., 2017, 139(22), 7513

    Article  CAS  PubMed  Google Scholar 

  40. Liu J., Mishra S., Pignedoli C. A., Passerone D., Urgel J. I., Fabrizio A., Lohr T. G., Ma J., Komber H., Baumgarten M., Corminboeuf C., Berger R., Ruffieux P., Müllen K., Fasel R., Feng X., J. Am. Chem. Soc., 2019, 141(30), 12011

    Article  CAS  PubMed  Google Scholar 

  41. Ma J., Liu J., Baumgarten M., Fu Y., Tan Y.-Z., Schellhammer K. S., Ortmann F., Cuniberti G., Komber H., Berger R., Müllen K., Feng X., Angew. Chem. Int. Ed., 2017, 56(12), 3280

    Article  CAS  Google Scholar 

  42. Lombardi F., Lodi A., Ma J., Liu J., Slota M., Narita A., Myers W. K., Müllen K., Feng X., Bogani L., Science, 2019, 366(6469), 1107

    Article  CAS  PubMed  Google Scholar 

  43. Ma J., Zhang K., Schellhammer K. S., Fu Y., Komber H., Xu C., Popov A. A., Hennersdorf F., Weigand J. J., Zhou S., Pisula W., Ortmann F., Berger R., Liu J., Feng X., Chem. Sci., 2019, 10(14), 4025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu R., Wu S., Yang L., Gao W., Qu H., Wang X., Chen J., Tang C., Shi H., Cao X., Angew. Chem. Int. Ed., 2019, 58(23), 7600

    Article  CAS  Google Scholar 

  45. Guo J., Li Z., Zhang J., Li B., Liang Y., Wang Y., Xie S., Phan H., Herng T. S., Ding J., Wu J., Tang B. Z., Zeng Z., CCS Chem., 2022, 4(1), 95

    Article  CAS  Google Scholar 

  46. Han H., Zhang D., Zhu Z., Wei R., Xiao X., Wang X., Liu Y., Ma Y., Zhao D., J. Am. Chem. Soc., 2021, 143(42), 17690

    Article  CAS  PubMed  Google Scholar 

  47. Liu C., Sandoval-Salinas M. E., Hong Y., Gopalakrishna T. Y., Phan H., Aratani N., Herng T. S., Ding J., Yamada H., Kim D., Casanova D., Wu J., Chem, 2018, 4(7), 1586

    Article  CAS  Google Scholar 

  48. Lu X., Gopalakrishna T. Y., Phan H., Herng T. S., Jiang Q., Liu C., Li G., Ding J., Wu J., Angew. Chem. Int. Ed., 2018, 57(40), 13052

    Article  CAS  Google Scholar 

  49. Fu X., Zhao D., Org. Lett., 2015, 17(22), 5694

    Article  CAS  PubMed  Google Scholar 

  50. Shi X., Chi C., Top Curr. Chem.(Z), 2017, 375(4), 68

    Article  Google Scholar 

  51. Gu R., Robeyns K., Van Meervelt L., Toppet S., Dehaen W., Org. Biomol. Chem., 2008, 6(14), 2484

    Article  CAS  PubMed  Google Scholar 

  52. Luo D., Lee S., Zheng B., Sun Z., Zeng W., Huang K.-W., Furukawa K., Kim D., Webster R. D., Wu J., Chem. Sci., 2014, 5(12), 4944

    Article  CAS  Google Scholar 

  53. Wang Z., Dai Y., Ding L., Dong B., Jiang S., Wang J., Pei J., Angew. Chem. Int. Ed., 2021, 60(9), 4594

    Article  CAS  Google Scholar 

  54. Shi X., Quintero E., Lee S., Jing L., Herng T. S., Zheng B., Huang K.-W., López Navarrete J. T., Ding J., Kim D., Casado J., Chi C., Chem. Sci., 2016, 7(5), 3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dressler J. J., Teraoka M., Espejo G. L., Kishi R., Takamuku S., Gómez-García C. J., Zakharov L. N., Nakano M., Casado J., Haley M. M., Nat. Chem., 2018, 10(11), 1134

    Article  CAS  PubMed  Google Scholar 

  56. Barker J. E., Price T. W., Karas L. J., Kishi R., MacMillan S. N., Zakharov L. N., Gómez-García C. J., Wu J. I., Nakano M., Haley M. M., Angew. Chem. Int. Ed., 2021, 60(41), 22385

    Article  CAS  Google Scholar 

  57. Ma L., Wang S., Li Y., Shi Q., Xie W., Chen H., Wang X., Zhu W., Jiang L., Chen R., Peng Q., Huang H., CCS Chem., 2022, 4(12), 3669

    Article  CAS  Google Scholar 

  58. Wang J., Ruan H., Hu Z., Wang W., Zhao Y., Wang X., Chem. Eur. J., 2022, 28(8), e202103897

    Article  CAS  PubMed  Google Scholar 

  59. Feng Z., Tang S., Su Y., Wang X., Chem. Soc. Rev., 2022, 51(14), 5930

    Article  CAS  PubMed  Google Scholar 

  60. Su Y., Kinjo R., Coord. Chem. Rev., 2017, 352, 346

    Article  CAS  Google Scholar 

  61. Kaim W., Hosmane N. S., Záliš S., Maguire J. A., Lipscomb W. N., Angew. Chem. Int. Ed., 2009, 48(28), 5082

    Article  CAS  Google Scholar 

  62. Maiti A., Zhang F., Krummenacher I., Bhattacharyya M., Mehta S., Moos M., Lambert C., Engels B., Mondal A., Braunschweig H., Ravat P., Jana A., J. Am. Chem. Soc., 2021, 143(10), 3687

    Article  CAS  PubMed  Google Scholar 

  63. Kushida T., Shirai S., Ando N., Okamoto T., Ishii H., Matsui H., Yamagishi M., Uemura T., Tsurumi J., Watanabe S., Takeya J., Yamaguchi S., J. Am. Chem. Soc., 2017, 139(41), 14336

    Article  CAS  PubMed  Google Scholar 

  64. Ito M., Shirai S., Xie Y., Kushida T., Ando N., Soutome H., Fujimoto K. J., Yanai T., Tabata K., Miyata Y., Kita H., Yamaguchi S., Angew. Chem. Int. Ed., 2022, 61(25), e202201965

    Article  CAS  Google Scholar 

  65. Saalfrank C., Fantuzzi F., Kupfer T., Ritschel B., Hammond K., Krummenacher I., Bertermann R., Wirthensohn R., Finze M., Schmid P., Engel V., Engels B., Braunschweig H., Angew. Chem. Int. Ed., 2020, 59(43), 19338

    Article  CAS  Google Scholar 

  66. Wang J., Cui H., Ruan H., Zhao Y., Zhao Y., Zhang L., Wang X., J. Am. Chem. Soc., 2022, 144(18), 7978

    Article  CAS  PubMed  Google Scholar 

  67. Guo J., Yang Y., Dou C., Wang Y., J. Am. Chem. Soc., 2021, 143(43), 18272

    Article  CAS  PubMed  Google Scholar 

  68. Tian X., Guo J., Sun W., Yuan L., Dou C., Wang Y., Chem. Eur. J., 2022, 28(17), e202200045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China(No. 22175074) and the Jilin Scientific and Technological Development Program, China(No. 20220101054JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuandong Dou.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Tian, X., Wang, Y. et al. Progress of Indeno-type Organic Diradicaloids. Chem. Res. Chin. Univ. 39, 161–169 (2023). https://doi.org/10.1007/s40242-023-2363-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-2363-3

Keywords

Navigation