Skip to main content
Log in

A Robust Wood-inspired Catalytic System for Highly Efficient Reduction of 4-Nitrophenol

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Porous solid scaffolds play key roles in preventing nanocatalysts from agglomeration, greatly maintaining the catalytic efficiency and stability of nanocatalysts. However, facile preparation of robust scaffolds with high mass transfer efficiency for loading nanocatalysts remains a major challenge. Here, we fabricate a wood-inspired shape-memory chitosan scaffold for loading Au nanoparticles to reduce 4-nitrophenol via a simple “freeze-casting and dip-adsorption” approach. The obtained catalytic scaffold highly resembles the unidirectional microchannel structure of natural wood, resulting in robust mechanical properties and outstanding water absorption capacity. Additionally, Au nanoparticles can be firmly and uniformly anchored on the inner surface of these microchannels via electrostatic interaction, forming numerous microreactors. This catalytic system exhibits a high 4-nitrophenol conversion rate of 99% in 5 s and impressive catalytic stability even after continuously treating with more than 3 L of highly concentrated 4-nitrophenol solution(1 mmol/L). Therefore, the wood-like catalytic system presented here demonstrates the potential to be applied in the field of water treatment and environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis L. N., Chem. Rev., 1993, 93, 2693

    Article  CAS  Google Scholar 

  2. Miyaura N., Suzuki A., Chem. Rev., 1995, 95, 2457

    Article  CAS  Google Scholar 

  3. Levin S., Fritzsche J., Nilsson S., Runemark A., Dhokale B., Strom H., Sunden H., Nat. Commun., 2019, 10, 4426

    Article  CAS  Google Scholar 

  4. Wu H., Huang X., Gao M.-M., Liao X.-P., Shi B., Green Chem., 2011, 13, 651

    Article  CAS  Google Scholar 

  5. Kumar Sahoo P., Panigrahy B., Thakur D., Bahadur D., N. J. Chem., 2017, 41, 7861

    Article  CAS  Google Scholar 

  6. Kim D. H., Jeong J. H., Woo H. C., Kim M. H., Chem. Eng. J., 2021, 420, 127628

    Article  CAS  Google Scholar 

  7. Xu C., Liu T., Guo W., Sun Y., Liang C., Cao K., Guan T., Liang Z., Jiang L., Adv. Eng. Mater., 2020, 22, 1901088

    Article  CAS  Google Scholar 

  8. Hu R.-Z., Zhang X.-Q., Yao X.-H., Yang J.-X., Liu E.-J., Chen T., Fu Y.-J., Ind. Crop. Prod., 2022, 179, 114690

    Article  CAS  Google Scholar 

  9. Qiao L.-Z., Li S.-S., Li Y.-L., Liu Y., Du K.-F., J. Clean. Prod., 2020, 253, 120017

    Article  CAS  Google Scholar 

  10. Li Z., Xiao D., Ge Y., Koehler S., ACS Appl. Mater. Interfaces, 2015, 7, 15000

    Article  CAS  Google Scholar 

  11. Zhu H., Luo W., Ciesielski P. N., Fang Z., Zhu J.-Y., Henriksson G., Himmel M. E., Hu L., Chem. Rev., 2016, 116, 9305

    Article  CAS  Google Scholar 

  12. Chen S.-M., Zhang S.-C., Gao H.-L., Wang Q., Zhou L., Zhao H.-Y., Li X.-Y., Gong M., Pan X.-F., Cui C., Wang Z.-Y., Zhang Y., Wu H.-A., Yu S.-H., Natl. Sci. Rev., 2022, nwac195

  13. Yu Z.-L., Yang N., Zhou L.-C., Ma Z.-Y., Zhu Y.-B., Lu Y.-Y., Qin B., Xing W.-Y., Ma T., Li S.-C., Gao H. L., Wu H.-A., Yu S.-H., Sci. Adv., 2018, 4, eaat7223

    Article  CAS  Google Scholar 

  14. Zhu M., Li Y., Chen G., Jiang F., Yang Z., Luo X., Wang Y., Lacey S. D., Dai J., Wang C., Jia C., Wan J., Yao Y., Gong A., Yang B., Yu Z., Das S., Hu L., Adv. Mater., 2017, 29, 1704107

    Article  Google Scholar 

  15. Chen F., Gong A.-S., Zhu M., Chen G., Lacey S. D., Jiang F., Li Y., Wang Y., Dai J., Yao Y., Song J., Liu B., Fu K., Das S., Hu L., ACS Nano, 2017, 11, 4275

    Article  CAS  Google Scholar 

  16. He S.-M., Chen C.-J., Chen G., Chen F.-J., Dai J.-Q., Song J.-W., Jiang F., Jia C., Xie H., Yao Y.-G., Hitz E., Chen G.-G., Mi R.-Y., Jiao M.-L., Das S., Hu L.-B., Chem. Mater., 2020, 32, 1887

    Article  CAS  Google Scholar 

  17. Gao H.-L., Lu Y., Mao L.-B., An D., Xu L., Gu J.-T., Long F., Yu S.-H., Mater. Horiz., 2014, 1, 69

    Article  CAS  Google Scholar 

  18. Frens G., Nat. Phys. Sci., 1973, 241, 20

    Article  CAS  Google Scholar 

  19. Deville S., Saiz E., Nalla R. K., Tomsia A. P., Science, 2006, 311, 515

    Article  CAS  Google Scholar 

  20. Scotti K. L., Dunand D. C., Prog. Mater. Sci., 2018, 94, 243

    Article  CAS  Google Scholar 

  21. Mao L.-B., Gao H.-L., Yao H.-B., Liu L., Colfen H., Liu G., Chen S.-M., Li S.-K., Yan Y.-X., Liu Y.-Y., Yu S.-H., Science, 2016, 354, 107

    Article  CAS  Google Scholar 

  22. Gao H.-L., Zhu Y.-B., Mao L.-B., Wang F.-C., Luo X.-S., Liu Y.-Y., Lu Y., Pan Z., Ge J., Shen W., Zheng Y.-R., Xu L., Wang L.-J., Xu W.-H., Wu H.-A., Yu S.-H., Nat. Commun., 2016, 7, 12920

    Article  CAS  Google Scholar 

  23. Gao H.-L., Wang Z.-Y., Cui C., Bao J.-Z., Zhu Y.-B., Xia J., Wen S.-M., Wu H.-A., Yu S.-H., Adv. Mater., 2021, 33, e2102724

    Article  Google Scholar 

  24. Chen S.-X., Xue F., Kuang Y., Chen S., Sheng D., Chen H., Biomaterials, 2021, 269, 120533

    Article  CAS  Google Scholar 

  25. Shi L., Carn F., Boue F., Mosser G., Buhler E., ACS Macro. Lett., 2012, 1, 857

    Article  CAS  Google Scholar 

  26. Bian T., Gardin A., Gemen J., Houben L., Perego C., Lee B., Elad N., Chu Z., Pavan G. M., Klajn R., Nat. Chem., 2021, 13, 940

    Article  CAS  Google Scholar 

  27. Cui Y., Wang Y., Shao Z., Mao A., Gao W., Bai H., Adv. Mater., 2020, 32, e1908249

    Article  Google Scholar 

  28. Cyganowski P., Lesniewicz A., Dzimitrowicz A., Wolska J., Pohl P., Jermakowicz-Bartkowiak D., J. Colloid Interface Sci., 2019, 541, 226

    Article  CAS  Google Scholar 

  29. Liu T., Cui Z.-L., Liu Y., Bai X.-F., Appl. Catal. A: Gen., 2019, 588, 117278

    Article  Google Scholar 

  30. Vijilvani C., Bindhu M. R., Frincy F. C., AlSalhi M. S., Sabitha S., Saravanakumar K., Devanesan S., Umadevi M., Aljaafreh M. J., Atif M., J. Photochem. Photobiol. B, 2020, 202, 111713

    Article  CAS  Google Scholar 

  31. Li J., Liu C.-Y., Liu Y., J. Mater. Chem., 2012, 22, 8426

    Article  CAS  Google Scholar 

  32. Kuroda K., Ishida T., Haruta M., J. Mol. Catal. A-Chem., 2009, 298, 7

    Article  CAS  Google Scholar 

  33. Yu X.-F., Mao L.-B., Ge J., Yu Z.-L., Liu J.-W., Yu S.-H., Sci. Bull., 2016, 61, 700

    Article  CAS  Google Scholar 

  34. Liu T., Sun Y., Jiang B., Guo W., Qin W., Xie Y., ACS Appl. Mater. Interfaces, 2020, 12, 28100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China(No.2021YFA0715700), the National Natural Science Foundation of China(Nos.1732011, U1932213, 21975241), and the University Synergy Innovation Program of Anhui Province, China(No.GXXT-2019-028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huailing Gao or Shuhong Yu.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Long, F., Gao, H. et al. A Robust Wood-inspired Catalytic System for Highly Efficient Reduction of 4-Nitrophenol. Chem. Res. Chin. Univ. 39, 109–114 (2023). https://doi.org/10.1007/s40242-023-2338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-2338-4

Keywords

Navigation