Skip to main content
Log in

Insights into Promoting Effect of Sm on Catalytic Performance of the CeO2/Beta Catalyst in Direct Conversion of Bioethanol to Propylene

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

A series of Sm-doped CeO2/Beta composite catalysts with various Sm/Ce atomic ratios(0.1–0.4) were prepared by an incipient impregnation method, followed by calcination at 650 °C. They were characterized by X-ray diffraction(XRD), N2 adsorption, X-ray photoelectron spectroscopy(XPS), Raman, NH3-temperature programmed desorption(TPD) and CO2-TPD. The incorporation of Sm into CeO2/Beta increases obviously the propylene yield for the selective conversion of ethanol to propylene. The promoting effect of Sm on CeO2/Beta can be attributed to two reasons. One is more acetone intermediates are generated on the Sm-doped catalysts due to the enhanced formation of oxygen vacancies. The other is the conversion of acetone intermediate to propylene is enhanced owing to weaker and fewer acid sites on the Sm-doped catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun J. M., Wang Y., ACS Catal., 2014, 4, 1078

    Article  CAS  Google Scholar 

  2. Liu H. L., Jiang Y. Y., Zhou R. R., Chang Z. L., Hou Z. Y., Fuel, 2022, 321, 123980

    Article  CAS  Google Scholar 

  3. Blay V., Louis B., Miravalles R., Yokoi T., Peccatiello K. A., Clough M., Yilmaz B., ACS Catal., 2017, 7, 6542

    Article  CAS  Google Scholar 

  4. Dugkhuntod P., Wattanakit C., Catalysts, 2020, 10, 245

    Article  CAS  Google Scholar 

  5. Song Z., Takahashi A., Mimura N., Fujitani T., Catal. Lett., 2009, 131, 364

    Article  CAS  Google Scholar 

  6. Goto D., Harada Y., Furumoto Y., Takahashi A., Fujitani T., Oumi Y., Sadakane M., Sano T., Appl. Catal. A, 2010, 383, 89

    Article  CAS  Google Scholar 

  7. Song Z., Takahashi A., Nakamura I., Fujitani T., Appl. Catal. A, 2010, 384, 201

    Article  CAS  Google Scholar 

  8. Bi J. D., Liu M., Song C. S., Wang X. S., Guo X. W., Appl. Catal. B, 2011, 107, 68

    Article  CAS  Google Scholar 

  9. Furumoto Y., Harada Y., Tsunoji N., Takahashi A., Fujitani T., Ide Y., Sadakane M., Sano T., Appl. Catal A, 2011, 399, 262

    Article  CAS  Google Scholar 

  10. Takahashi A., Xia W., Nakamura I., Shimada H., Fujitani T., Appl. Catal. A, 2012, 423/424, 162

    Article  Google Scholar 

  11. Meng T., Mao D. S., Guo Q. S., Lu G. Z., Catal. Commun., 2012, 21, 52

    Article  CAS  Google Scholar 

  12. Huangfu J. J., Mao D. S., Zhai X. L., Guo Q. S., Appl. Catal. A, 2016, 520, 99

    Article  CAS  Google Scholar 

  13. Zhang N., Mao D. S., Zhai X. L., Fuel Process. Technol., 2017, 167, 50

    Article  CAS  Google Scholar 

  14. Xia W., Wang J. G., Wang L. X., Qian C., Ma C., Huang Y. X., Fan Hou M. D., Chen K., Appl. Catal. B, 2021, 294, 120242

    Article  CAS  Google Scholar 

  15. Iwamoto M., Mizuno S., Tanaka M., Chem. Eur. J., 2013, 19, 7214

    Article  CAS  PubMed  Google Scholar 

  16. Hayashi F., Tanaka M., Lin D., Iwamoto M., J. Catal., 2014, 316, 112

    Article  CAS  Google Scholar 

  17. Xia W., Wang F. F., Mu X. C., Chen K., Fuel Process. Technol., 2017, 166, 140

    Article  CAS  Google Scholar 

  18. Xia W., Wang F. F., Mu X. C., Chen K., Catal. Commun., 2017, 90, 10

    Article  CAS  Google Scholar 

  19. Xue F. Q., Miao C. X., Yue Y. H., Hua W. M., Gao Z., Green Chem., 2017, 19, 5582

    Article  CAS  Google Scholar 

  20. Xue F. Q., Miao C. X., Yue Y. H., Hua W. M., Gao Z., Fuel Process Technol., 2019, 186, 110

    Article  CAS  Google Scholar 

  21. Xu L. L., Zhao R. R., Zhang W. P., Appl. Catal. B, 2020, 279, 119389

    Article  CAS  Google Scholar 

  22. Jin H., Miao C. X., Yue Y. H., Tian C., Hua W. M., Gao Z., Catalysts, 2022, 12, 407

    Article  CAS  Google Scholar 

  23. Xu B., Yang H., Zhang Q. T., Yuan S. S., Xie A., Zhang M., Ohno T., ChemCatChem, 2020, 12, 2638

    Article  CAS  Google Scholar 

  24. Wang P. F., Wang J., Shi J., Du X., Hao X. G., Tang B., Abudula A., Guan G. Q., Mol. Catal., 2020, 492, 111027

    Article  CAS  Google Scholar 

  25. Rygel J. L., Chen Y. S., Pantano C. G., Shibata T., Du J. C., Kokou L., Woodman R., Belcher J., J. Am. Ceram Soc., 2011, 94, 2442

    Article  CAS  Google Scholar 

  26. Romeo M., Bak K., El Fallah J., Le Normand F., Hilaire L., Surf. Interface Anal., 1993, 20, 508

    Article  CAS  Google Scholar 

  27. Liyanage A. D., Perera S. D., Tan K., Chabal Y., Balkus K. J. Jr., ACS Catal., 2014, 4, 577

    Article  CAS  Google Scholar 

  28. Yang D., Wang L., Sun Y. Z., Zhou K. B., J. Phys. Chem. C, 2010, 114, 8926

    Article  CAS  Google Scholar 

  29. He D. D., Chen D. K., Hao H. S., Yu J., Liu J. P., Lu J. C., Liu F., Wan G. P., He S. F., Luo Y. M., Appl. Surf. Sci., 2016, 390, 959

    Article  CAS  Google Scholar 

  30. Yang J. D., Xie N., Zhang J. N., Fan W. L., Huang Y. C., Tong Y. X., Nanomaterials, 2020, 10, 2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rangaswamy A., Sudarsanam P., Reddy B. M., J. Rare Earths, 2015, 33, 1162

    Article  CAS  Google Scholar 

  32. Wang Z., Wang Q., Liao Y. C., Shen G. L., Gong X. Z., Han N., Liu H. D., Chen Y. F., ChemPhysChem, 2011, 12, 2763

    Article  CAS  PubMed  Google Scholar 

  33. Filtschew A., Hofmann K., Hess C., J. Phys. Chem. C, 2016, 120, 6694

    Article  CAS  Google Scholar 

  34. Reddy B. M., Thrimurthulu G., Katta L., J. Phys. Chem. C, 2009, 113, 15882

    Article  CAS  Google Scholar 

  35. Atribak I., Bueno-López A., García-García A., J. Mol. Catal. A, 2009, 300, 103

    Article  CAS  Google Scholar 

  36. Bueno-López A., Krishna K., Makkee M., Moulijn J. A., J. Catal., 2005, 230, 237

    Article  Google Scholar 

  37. Lee W., Chen S. Y., Chen Y. S., Dong C. L., Lin H. J., Chen C. T., Gloter A., J. Phys. Chem. C, 2014, 118, 26359

    Article  CAS  Google Scholar 

  38. Ilieva L., Petrova P., Pantaleo G., Zanella R., Liotta L. F., Georgiev V., Boghosian S., Kaszkur Z., Sobczak J. W., Lisowski W., Venezia A. M., Tabakova T., Appl. Catal. B, 2016, 188, 154

    Article  CAS  Google Scholar 

  39. Wu Z., Li M., Overbury S. H., J. Catal., 2012, 285, 61

    Article  CAS  Google Scholar 

  40. Matheus C. R. V., Chagas L. H., Gonzalez G. G., Aguiar E. F. S., Appel L. G., ACS Catal., 2018, 8, 7667

    Article  Google Scholar 

  41. Hasan M. A., Zaki M. I., Pasupulety L., Appl. Catal. A, 2003, 243, 81

    Article  CAS  Google Scholar 

  42. Jansen J. C., Creyghton E. J., Njo S. L., van Koningsveld H., van Bekkum H., Catal. Today, 1997, 38, 205

    Article  CAS  Google Scholar 

  43. Creyghton E. J., Ganeshie S. D., Downing R. S., van Bekkum H., J. Mol. Catal. A, 1997, 115, 349

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.22072027, 91645201), the Project of the Science and Technology Commission of Shanghai Municipality, China(No.19DZ2270100) and the Project of the Shanghai Research Institute of Petrochemical Technology SINOPEC (No.33750000-19-ZC0607-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Hua.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Xu, D., Tian, C. et al. Insights into Promoting Effect of Sm on Catalytic Performance of the CeO2/Beta Catalyst in Direct Conversion of Bioethanol to Propylene. Chem. Res. Chin. Univ. 38, 1547–1552 (2022). https://doi.org/10.1007/s40242-022-2128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-2128-4

Keywords

Navigation