Skip to main content
Log in

Rational Design of a Near-infrared Fluorescent Material with High Solid-state Efficiency, Aggregation-induced Emission and Live Cell Imaging Property

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Near-infrared(NIR) fluorescent materials with high photoluminescent quantum yields(PLQYs) have wide application prospects. Therefore, we design and synthesize a D-A type NIR organic molecule, TPATHCNE, in which triphenylamine and thiophene are utilized as the donors and fumaronitrile is applied as the acceptor. We systematically investigate its molecular structure and photophysical property. TPATHCNE shows high Tg of 110 °C and Td of 385 °C and displays an aggregation-induced emission(AIE) property. A narrow optical bandgap of 1.65 eV is obtained. The non-doped film of TPATHCNE exhibits a high PLQY of 40.3% with an emission peak at 732 nm, which is among the best values of NIR emitters. When TPATHCNE is applied in organic light-emitting diode(OLED), the electroluminescent peak is located at 716 nm with a maximum external quantum efficiency of 0.83%. With the potential in cell imaging, the polystyrene maleic anhydride(PMSA) modified TPATHCNE nanoparticles(NPs) emit strong fluorescence when labeling HeLa cancer cells, suggesting that TPATHCNE can be used as a fluorescent carrier for specific staining or drug delivery for cellular imaging. TPATHCNE NPs fabricated by bovine serum protein(BSA) are cultivated with mononuclear yeast cells, and the intense intracellular red fluorescence indicates that it can be adopted as a specific stain for imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen Q. F., Xu R. H., Wang Z., Zhao T. Y., Zhou Y., Xu Y. Z., Yang Z. W., Lei M., Meng L. J., Dang D. F., Chem. Res. Chinese Universities, 2021, 37(1), 143

    Article  CAS  Google Scholar 

  2. Wang J. F., Liu Y. S., Morsch M., Lu Y. Q., Ping S. G., Han L. L., Wang Z. J., Chen X. Y., Song C. H., Liu S. J., Shi B. Y., Tang B. Z., Adv. Mater., 2022, 34, 2106082

    Article  CAS  Google Scholar 

  3. Liu W., Zhang Y. H., Qi J., Qian J., Tang B. Z., Chem. Res. Chinese Universities, 2021, 37(1), 171

    Article  CAS  Google Scholar 

  4. Zou J. H., Li L., Zhu J. W., Li X. C., Yang Z., Huang W., Chen X. Y., Adv. Mater., 2021, 33, 2103627

    Article  CAS  Google Scholar 

  5. Paisley N. R., Halldorson S. V., Tran M. V., Gupta R., Kamal S., Algar W. R., Hudson Z. M., Angew. Chem. Int. Ed., 2021, 60, 18630

    Article  CAS  Google Scholar 

  6. Li M. Q., Ma H., Shi C., Zhang H., Long S. R., Sun W., Du J. J., Fan J. L., Peng X. J., Chem. Res. Chinese Universities, 2021, 37(4), 925

    Article  CAS  Google Scholar 

  7. Bünzli J. C. G., Eliseeva S. V., J. Rare Earths, 2010, 28, 824

    Article  Google Scholar 

  8. Ma Y., Zhang Y., Yu W. W., J. Mater. Chem. C, 2019, 7, 13662

    Article  CAS  Google Scholar 

  9. Koyama S., Inaba Y. C., Kasano M., Murata T., IEEE Trans. Electron Devices, 2008, 55, 754

    Article  CAS  Google Scholar 

  10. Stender B., Völker S. F., Lambert C., Pflaum J., Adv. Mater., 2013, 25, 2943

    Article  CAS  PubMed  Google Scholar 

  11. Choi I., Kim J. H., Jang J. S., Sensors(Basel, Switzerland), 2018, 18, 4151

    Article  PubMed  Google Scholar 

  12. Bezvikonnyi O., Gudeika D., Volyniuk D., Grazulevicius J. V., Bagdziunas G., New J. Chem., 2018, 42, 12492

    Article  CAS  Google Scholar 

  13. Wang Y. Y., Song W. X., Zhou L., Liang W. T, Mu H. C., Huang J. H., Su J. H., New J. Chem., 2018, 42, 17975

    Article  CAS  Google Scholar 

  14. Wang X. Y., Wu Y., Wu C. M., Li Y. X., Wang D. D., Wu Y., Ning S. Y., Jiao B., Wu Z. X., New J. Chem., 2022, 46, 419

    Article  CAS  Google Scholar 

  15. Lee S. E., Oh J. H., Baek H. J., Kim S., Do Y. R., Kim Y. K., J. Lumin., 2019, 207, 195

    Article  CAS  Google Scholar 

  16. Cheng J. F., Pan Z. H., Zhang K., Zhao Y., Wang C. K., Ding L., Fung M. K., Fan J., Chem. Eng. J., 2022, 430, 132744

    Article  CAS  Google Scholar 

  17. Brodeur J., Hu L., Malinge A., Eizner E., Skene W. G., Kéna-Cohen S., Adv. Opt. Mater., 2019, 7, 1901144

    Article  CAS  Google Scholar 

  18. Xiang H. F., Cheng J. H., Ma X. F., Zhou X. G., Chruma J. J., Chem. Soc. Rev., 2013, 42, 6128

    Article  CAS  PubMed  Google Scholar 

  19. Du B. S., Liao J. L., Huang M. H., Lin C. H., Lin H. W., Chi Y., Pan H. A., Fan G. L., Wong K. T., Lee G. H., Chou P. T., Adv. Funct. Mater., 2012, 22, 3491

  20. Cheng J. F., Kong F. C., Zhang K., Cai J. H., Zhao Y., Wang C. K., Fan J., Liao L. S., Chem. Eng. J., 2022, 430, 132822

    Article  CAS  Google Scholar 

  21. Zeng X., Huang Y. H., Gong S. L., Yin X. G., Lee W. K., Xiao X., Zhang Y., Zeng W. X., Lu C. H., Lee C. C., Dong X. Q., Zhong C., Wu C. C., Yang C. L., Sci. China Mater., 2020, 64, 920

    Article  Google Scholar 

  22. Li Z., Yang D. Z., Han C. M., Zhao B. J., Wang H. Q., Man Y., Ma P., Chang P., Ma D. G., Xu H., Angew. Chem. Int. Ed., 2021, 60, 14846

    Article  CAS  Google Scholar 

  23. Balijapalli U., Lee Y. T., Karunathilaka B. S. B., Tumen-Ulzii G., Auffray M., Tsuchiya Y. C., Nakanotani H., Adachi C., Angew. Chem. Int. Ed., 2021, 60, 19364

    Article  CAS  Google Scholar 

  24. Andruleviciene V., Leitonas K., Volyniuk D., Sini G., Grazulevicius J. V., Getautis V., Chem. Eng. J., 2021, 417, 127902

    Article  CAS  Google Scholar 

  25. He J. L., Kong F. C., Sun B. J., Wang X. J., Tian Q. S., Fan J., Liao L. S., Chem. Eng. J., 2021, 424, 130407

    Article  Google Scholar 

  26. He X., Gao L., Liu H., Liu F. T., Jiang D. Y., Du C. Y., Sun C. L., Lu P., Chem. Eng. J., 2021, 404, 127055

    Article  CAS  Google Scholar 

  27. Shang A..Q., Lu T., Liu H., Du C. Y., Liu F. T., Jiang D. Y., Min J. R., Zhang H. Q., Lu P., J. Mater. Chem. C, 2021, 9, 7392

    Article  CAS  Google Scholar 

  28. Gong X., Lu C. H., Lee W. K., Li P., Huang Y., Chen H., Z., Zhan L., Wu C. C., Gong S. L., Yang C. L., Chem. Eng. J., 2021, 405, 126663

    Article  CAS  Google Scholar 

  29. Zhang Y. W., Zhang D. D., Huang T. Y., Gillett A.J., Liu Y., Hu D. P., Cui L. S., Bin Z. Y., Li G. M., Wei J. B., Duan L., Angew. Chem. Int. Ed., 2021, 60, 20498

    Article  CAS  Google Scholar 

  30. Data P., Pander P., Okazaki M., Takeda Y., Minakata S., Monkman A. P., Angew. Chem. Int. Ed., 2016, 55, 5739

    Article  CAS  Google Scholar 

  31. Li C. L., Duan R. H., Liang B. Y., Han G. C., Wang S. P., Ye K. Q., Liu Y., Yi Y. P., Wang Y., Angew. Chem. Int. Ed., 2017, 56, 11525

    Article  CAS  Google Scholar 

  32. Liu Y. L., Man X. X., Bai Q., Liu H., Liu P. Y., Fu Y., Hu D. H., Lu P., Ma Y. G., CCS Chemistry, 2021, 4, 214

    Article  CAS  Google Scholar 

  33. Lee J. H., Han G. W., Kim K. J., Lee H., Kim Y. K., Yoon S. S., J. Nanosci. Nanotechnol., 2021, 21, 4665

    Article  CAS  PubMed  Google Scholar 

  34. Jang B., Han G., Kim K., Lee H., Kim Y., Seungsoo, J. Nanosci. Nanotechnol., 2021, 21, 3914

    Article  CAS  PubMed  Google Scholar 

  35. Han X., Bai Q., Yao L., Liu H., Gao Y., Li J. Y., Liu L., Liu Y. L., Li X. X., Lu P., Yang B., Adv. Funct. Mater., 2015, 25, 7521

    Article  Google Scholar 

  36. Kim J. U., Reddy S. S., Cui L. S., Nomura H., Hwang S., Kim D. H., Nakanotani H., Jin S. H., Adachi C., J. Lumin., 2017, 190, 485

    Article  CAS  Google Scholar 

  37. Li N., Fang Y., Li L., Zhao H., Quan Y., Ye S., Fan Q., Huang W., J. Lumin., 2018, 199, 465

    Article  CAS  Google Scholar 

  38. Wang J. F., He Y. W., Guo S. H., Ali M. U., Zhao C. B., Zhu Y. N., Wang T., Wang Y. R., Miao J. S., Wei G. D., Meng H., ACS Appl. Mater. Interfaces, 2021, 13, 12250

    Article  CAS  PubMed  Google Scholar 

  39. Li J. Y., Shan T., Yao M. M., Gao Y., Han X., Yang B., Lu P., J. Mater. Chem. C, 2017, 5, 2552

    Article  CAS  Google Scholar 

  40. Valentin H. K. F., Neil J. F., Benjamin B., Clarissa F., Anto R. I., Joseph C., Alexander L. K., Peter J. S., J. Mater. Chem. C, 2019, 7, 3934

    Article  Google Scholar 

  41. Wang Y. Y., Tong K. N., Zhang K., Lu C. H., Chen X., Liang J. X., Wang C. K., Wu C. C., Fung M. K., Fan J., Mater. Horiz., 2021, 8, 1297

    Article  CAS  PubMed  Google Scholar 

  42. Rodriguez-Seco C., Mendez M., Roldan-Carmona C., Cabau L., Asiri A. M., Nazeeruddin M. K., Palomares E., ACS Appl. Mater. Interfaces, 2020, 12, 32712

    Article  CAS  PubMed  Google Scholar 

  43. Wu C., Shi C. S., Zheng Y. Y., Zhang J. Y., Wang Y. F., Sun N., Wang Q., Lu Z. H., Chem. Eng. J., 2022, 431, 133249

    Article  CAS  Google Scholar 

  44. Rietsch P., Sobottka S., Hoffmann K., Hildebrandt P., Sarkar B., Resch-Genger U., Eigler S., ChemPhotoChem, 2020, 4, 668

    CAS  Google Scholar 

  45. Balijapalli U., Nagata R., Yamada N., Nakanotani H., Tanaka M., D’Aleo A., Placide V., Mamada M., Tsuchiya Y., Adachi C., Angew. Chem. Int. Ed., 2021, 60, 8477

    Article  CAS  Google Scholar 

  46. Du C. Y., Liu F. T., Liu H., He X., Jiang D. Y., Feng Z. J., Gao L., Lu P., J. Mater. Chem. C, 2020, 8, 14446

    Article  CAS  Google Scholar 

  47. Zhou C., Chen W. C., Liu H., Cao X., Li N., Zhang Y., Lee C. S., Yang C. L., J. Mater. Chem. C, 2020, 8, 9639

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.22075100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijun Chen or Ping Lu.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Electronic Supplementary Material

40242_2022_2046_MOESM1_ESM.pdf

Rational Design of a Near-infrared Fluorescent Material with High Solid-state Efficiency, Aggregation-induced Emission and Live Cell Imaging Property

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, A., Zhao, L., Li, Z. et al. Rational Design of a Near-infrared Fluorescent Material with High Solid-state Efficiency, Aggregation-induced Emission and Live Cell Imaging Property. Chem. Res. Chin. Univ. 38, 1461–1466 (2022). https://doi.org/10.1007/s40242-022-2046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-2046-5

Keywords

Navigation