Skip to main content
Log in

Theoretical Study on the Structures, Spectral Properties, and Drugability of Xenicane-type Diterpenoids from Dictyota dichotoma

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

There are few reports on the relationship between the biological activity and structure of secondary metabolites from Dictyota dichotoma. In this work, the geometric and electronic structures, infrared spectra, ultraviolet spectra, 13C and 1H NMR spectra of 16 xenicane-type diterpenoids extracted from Dictyota dichotoma were studied by the density functional theory ωB97XD/6-311+G(2d,p) method. The analysis of the reactivity indices was carried out via the conceptual density functional theory. Furthermore, a pharmacodynamic evaluation was performed using ADME/Tox. The geometric structure analysis found that all 16 diterpenoids had the same unsaturated, branched chains and could be divided into two categories according to the ring size, including nine-membered and eight-membered rings. A hydroxyl group on the lactone ring reduced the stability of the compound. In contrast, a hydroxyl group on the parent ring had little effect on the compound’s stability. The electrostatic potential results preliminarily predicted active sites for nucleophilic/electrophilic reactions. The fitting results of infrared and nuclear magnetic resonance(NMR) data showed that the theoretical values obtained by this method were consistent with the experimental values. The UV-visible absorption spectra showed that the solvent effects caused different redshifts of the absorption peaks. The absorption strength was enhanced. The sixteen diterpenoids displayed a strong absorption peak in the range of 180–200 nm, but the compound containing a carbonyl group presents a weaker absorption peak in the field of 200–240 nm. Compounds 911, 14, and 15 have better stability and reactivity with lower chemical potentials and higher electronegativity, electrophilic index, and hardness values. The local reactivity descriptors further identified nucleophilic/electrophilic reaction sites for the sixteen compounds. Finally, the pharmacodynamic evaluation results predicted that compounds 2, 4, 8, 11, and 1416 have optimal drugability. The theoretical results of this work may provide a rich data information for the other experimental study on the cembrane diterpenoids in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. El-Katony T. M., Deyab M. A., El-Adl M. F., El-Nabway W. F. M., Mol. Biol. Plants, 2020, 26, 1155

    Article  CAS  Google Scholar 

  2. El-Shaibany A., Al-Habori M., Al-Maqtari T., Al-Mahbashi H., Flora S. J. S., Biomed. Res. Int., 2020, 2020, 2425693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Dixit D., Reddy C. R. K., Trivedi M. H., Gadhavi D. K., Sep. Sci. Plus., 2020, 3, 1

    Article  CAS  Google Scholar 

  4. Vasavi T., Lavanya L. Y., Vani M., Uma M. D. P., J. Pharm. Clin. Res., 2019, 12, 520

    Google Scholar 

  5. Minicante S. A., Carlin S., Stocco M., Sfriso A., Capelli G., Montarsi F., J. Am. Mosq. Control Assoc., 2017, 33, 352

    Article  PubMed  Google Scholar 

  6. Malyarenko O. S., Usoltseva R. V, Zvyagintseva T. N., Ermakova S. P., Carbohydr. Polym., 2019, 206, 539

    Article  CAS  PubMed  Google Scholar 

  7. Agatonovic-Kustrin S., Kustrin E., Angoveb M. J., Morton D. W., J. Chromatogr. A, 2018, 1550, 57

    Article  CAS  PubMed  Google Scholar 

  8. Siless G. E., García M., Pérez M., Blustein G., Palermo J. A., J. Appl. Phycol., 2018, 30, 629

    Article  CAS  Google Scholar 

  9. Benattouche Z., Bachir R. G., Russ. J. Mar. Biol., 2017, 43, 491

    Article  Google Scholar 

  10. Parr R., Yang W., Density-functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989

    Google Scholar 

  11. Chermette H., J. Comput. Chem., 1999, 20, 129

    Article  CAS  Google Scholar 

  12. Geerlings P., Proft F. D., Langenaeker W., Chem. Rev., 2003, 103, 1793

    Article  CAS  PubMed  Google Scholar 

  13. Domingo L. R., Perez P., Org. Biomol. Chem., 2011, 9, 7168

    Article  CAS  PubMed  Google Scholar 

  14. Sánchez-Márquez J., Zorrilla D., García V., Fernández M., Mol. Phys., 2018, 116, 1737

    Article  CAS  Google Scholar 

  15. Xu Z., Zhao J., Zhao D., Yang Z., Chin. J. Chem., 2020, 38, 1696

    Article  CAS  Google Scholar 

  16. Vargas-Sánchez R. D., Mendoza-Wilson A. M., Balandrán-Quintana R. R., Torrescano-Urrutia G. R., Sánchez-Escalante A., Comput. Theor. Chem., 2015, 1058, 21

    Article  CAS  Google Scholar 

  17. Wang L., Yang F., Zhao X., Li Y., Food Chem., 2019, 275, 339

    Article  CAS  PubMed  Google Scholar 

  18. Norma F. H., Juan F., Daniel G. M., Molecules, 2019, 24, 3312

    Article  CAS  Google Scholar 

  19. Juan F., Norma F. H., Daniel G. M., Mar. Drugs, 2018, 16, 302

    Article  CAS  Google Scholar 

  20. Norma F. H., Juan F., Daniel G. M., Mar. Drugs, 2020, 18, 478

    Article  CAS  Google Scholar 

  21. Norma F. H., Juan F., Daniel G. M., Molecules, 2020, 25, 4158

    Article  CAS  Google Scholar 

  22. Bugrim A., Nikolskaya T., Nikolsky Y., Drug Discov. Today, 2004, 9, 127

    Article  CAS  PubMed  Google Scholar 

  23. Ekins S., Andreyev S., Ryabov A., Kirillov E., Rakhmatulin E. A., Sorokina S., Bugrim A., Nikolskaya T., Drug Metab. Dispos., 2006, 34, 495

    Article  CAS  PubMed  Google Scholar 

  24. Advanced Chemistry Development Inc., (ACD/Labs), ACD/Percepta Version 2015, Frankfurt Am Main, 2016

  25. da Cunha M. G., Franco G. C., Franchin M., Beutler J. A., de Alencar S. M., Ikegaki M., Rosalen P. L., Toxicol. Lett., 2016, 263, 6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ribeiro A. R., Schmidt T. C., Chemosphere, 2017, 169, 524

    Article  CAS  PubMed  Google Scholar 

  27. Salzner U., Aydin A., J. Chem. Theory Comput., 2011, 7, 2568

    Article  CAS  PubMed  Google Scholar 

  28. Holtomo O., Motapon O., Nsangou M., J. Phys. Chem. A, 2019, 123, 10437

    Article  CAS  PubMed  Google Scholar 

  29. Sciortino G., Maréchal J. D., Fábián I., Lihi N., Garribba E., J. Inorg. Biochem., 2020, 204, 110953

    Article  CAS  PubMed  Google Scholar 

  30. Sun Y., Tsai M., Zhou W., Lu W., Liu J., J. Phys. Chem. B, 2019, 123, 10410

    Article  CAS  PubMed  Google Scholar 

  31. Miertuš S., Tomasi, J. Chem. Phys., 1982, 65, 239

    Google Scholar 

  32. Miertuš S., Scrocco E., Tomasi, J. Chem. Phys., 1981, 55, 117

    Google Scholar 

  33. Fu R., Lu T., Chen F., Acta Phys-chim Sin., 2014, 30, 628

    Article  CAS  Google Scholar 

  34. Kar R., Pal S., Int. J. Quantum Chem., 2010, 110, 1642

    Article  CAS  Google Scholar 

  35. Morell C., Grand A., Toro-Labbé A., Chem. Phys. Lett., 2006, 425, 342

    Article  CAS  Google Scholar 

  36. Martínez-Araya J. I., J. Mol. Model., 2012, 18, 4299

    Article  PubMed  CAS  Google Scholar 

  37. Martínez-Araya J. I., J. Mol. Model., 2012, 19, 2715

    Article  PubMed  CAS  Google Scholar 

  38. Martínez-Araya J. I., J. Math. Chem., 2015, 53, 451

    Article  CAS  Google Scholar 

  39. Chamorro E., Pérez P., Domingo L. R., Chem. Phys. Lett., 2013, 582, 141

    Article  CAS  Google Scholar 

  40. Frisch M. J., Trucks G. W., Schlegel H. B., Gaussian 16 Revision B.01, Gaussian Inc, Wallingford CT, 2016

    Google Scholar 

  41. Lu T., Chen F. W., J. Comput. Chem., 2012, 33, 580

    Article  PubMed  CAS  Google Scholar 

  42. Zhao M., Cheng S. M., Yuan W. P., Dong J. Y., Huang K. X., Sun Z. M., Chem. Pharm. Bull., 2015, 63, 1081

    Article  CAS  Google Scholar 

  43. Sun H. H., McEnroe F. J., William F., J. Org. Chem., 1983, 48, 1903

    Article  CAS  Google Scholar 

  44. Midland S. L., Wing R. M., Sims J. J., J. Org. Chem., 1983, 48, 1906

    Article  CAS  Google Scholar 

  45. Viano Y., Bonhomme D., Camps M., Briand J. F., Ortalo-Magné A., Blache Y., Culioli G., J. Nat. Prod., 2009, 72, 1299

    Article  CAS  PubMed  Google Scholar 

  46. Nobuyasu E., Ryoichi I., Takeshi M., Chem. Lett., 1982, 11, 1749

    Article  Google Scholar 

  47. Norte M., González A. G., Arroyo P., Tetrahedron, 1990, 46, 6125

    Article  CAS  Google Scholar 

  48. Finer J., Clardy J., Fenical W., Minale L., Ricco R., Battaile J., Kirkup M., Moore R. E., J. Org. Chem., 1979, 44, 2044

    Article  CAS  Google Scholar 

  49. Jacquemin D., Preat J., Perpete E. A., Chem. Phys. Lett., 2005, 410, 254

    Article  CAS  Google Scholar 

  50. Li L., Feng J., Ren A., Sun C., Chin. J. Chem., 2011, 29, 2263

    Article  CAS  Google Scholar 

  51. Simon P. B. O., Jonathan L. N., Catherine H. L., Molecules, 2012, 17, 2929

    Article  CAS  Google Scholar 

  52. Nageswari G., George G., Ramalingam S., Govindarajan M., J. Appl. Polym. Sci., 2018, 1166, 422

    CAS  Google Scholar 

  53. Othmani A., Bouzidi N., Viano Y., Alliche Z., Seridi H., Blache Y., Culioli G., J. Appl. Phycol., 2013, 26, 1573

    Google Scholar 

  54. Guella G., Chiasera G., Ndiaye I., Pietra F., Helv. Chim. Acta, 1994, 77, 1203

    Article  CAS  Google Scholar 

  55. Panayiota S., Antonis B., Dimitra I., Phytochemistry, 2004, 65, 2025

    Article  CAS  Google Scholar 

  56. Lipinski C. A., J. Pharmacol. Toxicol. Methods, 2000, 44, 235

    Article  CAS  PubMed  Google Scholar 

  57. Selick H. E., Beresford A. P., Tarbit M.H., Drug Discov. Today, 2002, 7, 109

    Article  PubMed  Google Scholar 

  58. Guo Z. R., Chin. J. Pharm., 2010, 45, 539

    CAS  Google Scholar 

  59. Li Y., Zhu C. Y., J. Liaocheng Univ., 2019, 32, 1

    CAS  Google Scholar 

  60. Zhang W. D., Sun H., Song S. S., Dai G. L., Bai Y. T., Ju W. Z., New Chin. Med. Clin. Pharmacol., 2019, 30, 695

    Google Scholar 

  61. Decleves X., Jacob A., Yousif S., Curr. Drug Metab., 2011, 12, 732

    Article  CAS  PubMed  Google Scholar 

  62. Elmeliegy M., Vourvahis M., Guo C. C., Wang D. D., Clin. Pharmacokinet., 2020, 59, 699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China(No. 21177098), the Zhejiang Provincial Natural Science Foundation, China(No. LY16B070006), and the Zhejiang Traditional Chinese Medicine Science and Technology Project, China(No. 2020ZB141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaojie Wang.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

40242_2021_1296_MOESM1_ESM.pdf

Theoretical Study on the Structures, Spectral Properties and Druggability of Diterpenoids in Xenicane Type from Dictyota Dichotoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Sun, X., Chen, M. et al. Theoretical Study on the Structures, Spectral Properties, and Drugability of Xenicane-type Diterpenoids from Dictyota dichotoma. Chem. Res. Chin. Univ. 38, 622–631 (2022). https://doi.org/10.1007/s40242-021-1296-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1296-y

Keywords

Navigation