Skip to main content
Log in

Growth of Single-walled Carbon Nanotubes on Substrates Using Carbon Monoxide as Carbon Source

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The growth of single-walled carbon nanotubes(SWCNTs) on substrates has attracted great interests because of the potential applications in various fields. Carbon monoxide(CO) was used as the carbon source for the growth of SWCNTs on silicon substrates. Random or oriented SWCNTs can be produced by varying the CO flow rate. When the flow rate of CO was as low as 20 sccm(sccm: standard cubic centimeter per minute), dense SWCNT networks with clean surface were produced. When the flow rate was above 50 sccm, vertically aligned SWCNT(VA-SWCNT) arrays were grown. Well-aligned VA-SWCNT arrays were obtained in the temperature range of 650–800 °C and the content of large-diameter(above 1.7 nm) tubes in the array increased with the temperature. The height of the array was affected by the growth temperature, the CO flow rate, and the growth time. These findings indicate CO can be used as an efficient carbon source for the growth of SWCNTs on substrates under low flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S., Ichihashi T., Nature, 1993, 363, 603

    Article  CAS  Google Scholar 

  2. De Volder M. F. L., Tawfick S. H., Baughman R. H., Hart A. J., Science, 2013, 339, 535

    Article  CAS  PubMed  Google Scholar 

  3. Saito R., Fujita M., Dresselhaus G., Dresselhaus M. S., Appl. Phys. Lett., 1992, 60, 2204

    Article  CAS  Google Scholar 

  4. Yang F., Wang X., Si J., Zhao X., Qi K., Jin C., Zhang Z., Li M., Zhang D., Yang J., Zhang Z., Xu Z., Peng L. M., Bai X., Li Y., ACS Nano, 2017, 11, 186

    Article  CAS  PubMed  Google Scholar 

  5. Yang F., Wang X., Zhang D., Qi K., Yang J., Xu Z., Li M., Zhao X., Bai X., Li Y., J. Am. Chem. Soc., 2015, 137, 8688

    Article  CAS  PubMed  Google Scholar 

  6. Yang F., Wang X., Zhang D., Yang J., Luo D., Xu Z., Wei J., Wang J. Q., Xu Z., Peng F., Li X., Li R., Li Y., Li M., Bai X., Ding F., Li Y., Nature, 2014, 510, 522

    Article  CAS  PubMed  Google Scholar 

  7. Zhang S., Kang L., Wang X., Tong L., Yang L., Wang Z., Qi K., Deng S., Li Q., Bai X., Ding F., Zhang J., Nature, 2017, 543, 234

    Article  CAS  PubMed  Google Scholar 

  8. Yu L., Shearer C., Shapter J., Chem. Rev., 2016, 116, 13413

    Article  CAS  PubMed  Google Scholar 

  9. Jiang S., Hou P. X., Chen M. L., Wang B. W., Sun D. M., Tang D. M., Jin Q., Guo Q. X., Zhang D. D., Du J. H., Tai K. P., Tan J., Kauppinen E. I., Liu C., Cheng H. M., Science Advances, 2018, 4, eaap9264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wu Z. C., Chen Z. H., Du X., Logan J. M., Sippel J., Nikolou M., Kamaras K., Reynolds J. R., Tanner D. B., Hebard A. F., Rinzler A. G., Science, 2004, 305, 1273

    Article  CAS  PubMed  Google Scholar 

  11. Futaba D. N., Hata K., Yamada T., Hiraoka T., Hayamizu Y., Kakudate Y., Tanaike O., Hatori H., Yumura M., Iijima S., Nat. Mater., 2006, 5, 987

    Article  CAS  PubMed  Google Scholar 

  12. Robertson J., Zhong G., Telg H., Thomsen C., Warner J. H., Briggs G. A. D., Dettlaff-Weglikowska U., Roth S., Appl. Phys. Lett., 2008, 93, 163111

    Article  CAS  Google Scholar 

  13. Mizuno K., Ishii J., Kishida H., Hayamizu Y., Yasuda S., Futaba D. N., Yumura M., Hata K., Proc. Natl. Acad. Sci. USA, 2009, 106, 6044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bedewy M., Meshot E. R., Guo H., Verploegen E. A., Lu W., Hart A. J., J. Phys. Chem. C, 2009, 113, 20576

    Article  CAS  Google Scholar 

  15. Li W. Z., Xie S. S., Qian L. X., Chang B. H., Zou B. S., Zhou W. Y., Zhao R. A., Wang G., Science, 1996, 274, 1701

    Article  CAS  PubMed  Google Scholar 

  16. Fan S. S., Chapline M. G., Franklin N. R., Tombler T. W., Cassell A. M., Dai H. J., Science, 1999, 283, 512

    Article  CAS  PubMed  Google Scholar 

  17. Xu M., Futaba D. N., Yumura M., Hata K., ACS Nano, 2012, 6, 5837

    Article  CAS  PubMed  Google Scholar 

  18. Chen G., Davis R. C., Futaba D. N., Sakurai S., Kobashi K., Yumura M., Hata K., Nanoscale, 2016, 8, 162

    Article  CAS  PubMed  Google Scholar 

  19. Murakami Y., Chiashi S., Miyauchi Y., Hu M. H., Ogura M., Okubo T., Maruyama S., Chem. Phys. Lett., 2004, 385, 298

    Article  CAS  Google Scholar 

  20. Hata K., Futaba D. N., Mizuno K., Namai T., Yumura M., Iijima S., Science, 2004, 306, 1362

    Article  CAS  PubMed  Google Scholar 

  21. Sugime H., Noda S., Carbon, 2010, 48, 2203

    Article  CAS  Google Scholar 

  22. Zhong G., Warner J. H., Fouquet M., Robertson A. W., Chen B., Robertson J., ACS Nano, 2012, 6, 2893

    Article  CAS  PubMed  Google Scholar 

  23. Noda S., Hasegawa K., Sugime H., Kakehi K., Zhang Z., Maruyama S., Yamaguchi Y., Jpn. J. Appl. Phys., Part 2, 2007, 46, L399

    Article  CAS  Google Scholar 

  24. Eres G., Kinkhabwala A. A., Cui H. T., Geohegan D. B., Puretzky A. A., Lowndes D. H., J. Phys. Chem. B, 2005, 109, 16684

    Article  CAS  PubMed  Google Scholar 

  25. Zhong G., Hofmann S., Yan F., Telg H., Warner J. H., Eder D., Thomsen C., Milne W. I., Robertson J., J. Phys. Chem. C, 2009, 113, 17321

    Article  CAS  Google Scholar 

  26. Kimura H., Goto J., Yasuda S., Sakurai S., Yumura M., Futaba D. N., Hata K., Sci. Rep., 2013, 3, 6

    Article  Google Scholar 

  27. Amama P. B., Pint C. L., McJilton L., Kim S. M., Stach E. A., Murray P. T., Hauge R. H., Maruyama B., Nano Lett., 2009, 9, 44

    Article  CAS  PubMed  Google Scholar 

  28. Futaba D. N., Goto J., Yasuda S., Yamada T., Yumura M., Hata K., Adv. Mater., 2009, 21, 4811

    Article  CAS  PubMed  Google Scholar 

  29. In J. B., Grigoropoulos C. P., Chernov A. A., Noy A., Appl. Phys. Lett., 2011, 98, 153102

    Article  CAS  Google Scholar 

  30. Miura S., Yoshihara Y., Asaka M., Hasegawa K., Sugime H., Ota A., Oshima H., Noda S., Carbon, 2018, 130, 834

    Article  CAS  Google Scholar 

  31. Nikolaev P., Bronikowski M. J., Bradley R. K., Rohmund F., Colbert D. T., Smith K. A., Smalley R. E., Chem. Phys. Lett., 1999, 313, 91

    Article  CAS  Google Scholar 

  32. Kitiyanan B., Alvarez W. E., Harwell J. H., Resasco D. E., Chem. Phys. Lett., 2000, 317, 497

    Article  CAS  Google Scholar 

  33. Bronikowski M. J., Willis P. A., Colbert D. T., Smith K. A., Smalley R. E., J. Vac. Sci. Technol. A, 2001, 19, 1800

    Article  CAS  Google Scholar 

  34. He M., Chernov A. I., Fedotov P. V., Obraztsova E. D., Sainio J., Rikkinen E., Jiang H., Zhu Z., Tian Y., Kauppinen E. I., Niemelae M., Krauset A. O. I., J. Am. Chem. Soc., 2010, 132, 13994

    Article  CAS  PubMed  Google Scholar 

  35. Yuan Y., Karahan H. E., Yildirim C., Wei L., Birer O., Zhai S., Lau R., Chen Y., Nanoscale, 2016, 8, 17705

    Article  CAS  PubMed  Google Scholar 

  36. Liao Y., Jiang H., Wei N., Laiho P., Zhang Q., Khan S. A., Kauppinen E. I., J. Am. Chem. Soc., 2018, 140, 9797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang L., Tan Y. Q., Resasco D. E., Chem. Phys. Lett., 2006, 422, 198

    Article  CAS  Google Scholar 

  38. Jin Z., Chu H. B., Wang J. Y., Hong J. X., Tan W. C., Li Y., Nano Lett., 2007, 7, 2073

    Article  CAS  PubMed  Google Scholar 

  39. Peng B., Yao Y., Zhang J., J. Phys. Chem. C, 2010, 114, 12960

    Article  CAS  Google Scholar 

  40. Liu M., An H., Kumamoto A., Inoue T., Chiashi S., Xiang R., Maruyama S., Carbon, 2019, 146, 413

    Article  CAS  Google Scholar 

  41. Kistamurthy D., Saib A. M., Moodley D. J., Niemantsverdriet J. W., Weststrate C. J., J. Catal., 2015, 328, 123

    Article  CAS  Google Scholar 

  42. Araujo P. T., Maciel I. O., Pesce P. B. C., Pimenta M. A., Doorn S. K., Qian H., Hartschuh A., Steiner M., Grigorian L., Hata K., Jorio A., Phys. Rev. B, 2008, 77, 241403

    Article  CAS  Google Scholar 

  43. Tian Y., Timmermans M. Y., Kivisto S., Nasibulin A. G., Zhu Z., Jiang H., Okhotnikov O. G., Kauppinen E. I., Nano Res., 2011, 4, 807

    Article  CAS  Google Scholar 

  44. Sakurai S., Yamada I., Hata K., Futaba D. N., MRS Adv., 2018, 3, 91

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of the Ministry of Science and Technology of China(No.2016YFA0201904), the National Natural Science Foundation of China(No.21631002), the Project of the Beijing National Laboratory for Molecular Sciences, China(BNLMSCXTD-202001), the Shenzhen Basic Research Project, China(No.JCYJ20170817113121505) and the Shenzhen KQTD Project, China (No.KQTD20180411143400981).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Zhang, X., Liu, Q. et al. Growth of Single-walled Carbon Nanotubes on Substrates Using Carbon Monoxide as Carbon Source. Chem. Res. Chin. Univ. 37, 1125–1129 (2021). https://doi.org/10.1007/s40242-021-1277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1277-1

Keywords

Navigation