Skip to main content

Advertisement

Log in

Recent Development of DNA-modified AIEgen Probes for Biomedical Application

  • Review
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

A variety of DNA-based probes are utilized for the detections of multiple analytes and DNA nanotechnology has been thriving for recent decades and achieving numerous nanostructures, mainly focusing on DNA morphology modulation and multifunctional systems engineered into to the complicated works. Among the numerous detections, fluorescence method is a non-invasive, highly selective and sensitive means for varieties of applications, but their emissions are often compromised by the aggregation-caused quenching(ACQ) effect, which weakens their applications. The aggregation induced emission luminogens(AIEgens) are created with non emissive or weakly emissive in a low concentration but emit strong fluorescence in a high concentration with aggregated states. Herein, numerous functionalized AIEgens have been emerged and used for detection and imaging and DNA-modified AIEgen probes are introduced. In this vein, here we report the progress on DNA-modified AIEgen probes in recent years and highlight their conjugation strategies including covalent bonding, electrostatic interaction and their applications of biosensing. Moreover, multiple DNA strands are needed to introduce into the DNA-modified AIEgen probes for more purposes. At the end, some challenges are mentioned to discuss the new trend of DNA-modified AIEgen probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yakovchuk P., Protozanova E., Frank-Kamenetskii M. D., Nucleic Acids Res., 2006, 34(2), 564

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Myers L. C., Kornberg R. D., Annu. Rev. Biochem., 2000, 69, 729

    CAS  PubMed  Google Scholar 

  3. Wang Y. F., Zhang X., Zou G. G., Peng S., Liu C. X., Zhou X., Acc. Chem. Res., 2019, 52(4), 1016

    CAS  PubMed  Google Scholar 

  4. Seeman N. C., Q. Rev.Biophys., 2005, 38(4), 363

    CAS  PubMed  Google Scholar 

  5. Tian T., Song Y. Y., Wei L, Wang J. Q., Fu B. S., He Z. Y., Yang X. R., Wu F., Xu G. H., Liu S. M., Li C. G., Wang S. R., Zhou X., Nucleic Acids Res., 2017, 45(5), 2283

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Griffith J. D., Comeau L., Rosenfield S., Stansel R. M., Bianchi A., Moss H., de Lange T., Cell, 1999, 97(4), 503

    CAS  PubMed  Google Scholar 

  7. Xiang Y., Lu Y., Nat. Chem., 2011, 3(9), 697

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li J., Lu Y., J. Am. Chem. Soc., 2000, 122(42), 10466

    CAS  Google Scholar 

  9. Torabi S. F., Wu P. W., McGhee C. E., Chen L., Hwang K., Zheng N., Cheng J. J., Lu Y., Proc. Natl. Acad. Sci. USA, 2015, 112(19), 5903

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Duan R. X., Zuo X. L., Wang S. T., Quan X. Y., Chen D. L., Chen Z. F., Jiang L., Fan C. H., Xia F., J. Am. Chem. Soc., 2013, 135(12), 4604

    CAS  PubMed  Google Scholar 

  11. Wu J., Hu Q. Y., Chen Q., Dai J., Wu X., Wang S. X., Lou X. D., Xia F., ACS Applied Bio Materials, 2020, 3(12), 9002

    CAS  PubMed  Google Scholar 

  12. Cutler J. I., Auyeung E., Mirkin C. A., J. Am. Chem. Soc., 2012, 134(3), 1376

    CAS  PubMed  Google Scholar 

  13. Albert S. K., Sivakumar I., Golla M., Thelu H. V. P., Krishnan N., Libin K. L. J., Ashish, Varghese R., J. Am. Chem. Soc., 2017, 139(49), 17799

    CAS  PubMed  Google Scholar 

  14. Hong F., Zhang F., Liu Y., Yan H., Chem. Rev., 2017, 117(20), 12584

    CAS  PubMed  Google Scholar 

  15. Li Z. H., Wang J., Li Y. X., Liu X. W., Yuan Q., Mater. Chem. Front, 2018, 2, 423

    CAS  Google Scholar 

  16. Haugland R. P., The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, Life Technologies, Carlsbad, CA, 2010

  17. Ding D., Li K., Liu B., Tang B. Z., Acc. Chem. Res., 2013, 46(11), 2441

    CAS  PubMed  Google Scholar 

  18. Luo J., Xie Z., Lam J. W., Cheng L., Chen H., Qiu C., Kwok H. S., Zhan X., Liu Y., Zhu D., Tang B. Z., Chem. Commun., 2001, 18, 1740

    Google Scholar 

  19. Xia F., Wu J., Wu X., Hu Q.Y., Dai J., Lou X. D., Acc. Chem. Res., 2019, 52(11), 3064

    CAS  PubMed  Google Scholar 

  20. Wu F., Wu X., Duan Z. J., Huang Y., Lou X. D., Xia F., Small, 2019, 15(32), e1804839

    PubMed  Google Scholar 

  21. Cheng Y., Sun C. L., Liu R., Yang J. L., Dai J., Zhai T. Y., Lou X. D., Xia F., Angew Chem. Int. Ed., 2019, 58(15), 5049

    CAS  Google Scholar 

  22. Chen C., Ni X., Jia S., Liang Y., Wu X., Kong D., Ding D., Adv. Mater., 2019, 31(52), 1904914

    CAS  Google Scholar 

  23. Ni X., Zhang X., Duan X., Zheng H., Xue X., Ding D., ACS Nano, 2019, 19, 318

    CAS  Google Scholar 

  24. Chen C., Ou H., Liu R., Ding D., Adv. Mater., 2020, 32(3), 1806331

    CAS  Google Scholar 

  25. Chen C., Ni X., Tian H., Liu Q., Guo D., Ding D., Angew Chem. Int. Ed., 2020, 59(25), 10008

    CAS  Google Scholar 

  26. Yang J. L., Dai J., Wang Q., Cheng Y., Guo J. J., Zhao Z. J., Hong Y. N., Lou X. D., Xia F., Angew Chem. Int. Ed., 2020, 59(46), 20450

    Google Scholar 

  27. Dai J., Cheng Y., Wu J., Wang Q., Wang W. W., Yang J. L., Zhao Z. J., Lou X. D., Xia F., Wang S. X., Tang B. Z., ACS Nano., 2020, 14(11), 14698

    PubMed  Google Scholar 

  28. Treiber T., Treiber N., Meister G., Nat. Rev. Mol. Cell Biol., 2019, 20(1), 5

    CAS  PubMed  Google Scholar 

  29. Min X. H., Zhuang Y., Zhang Z. Y., Jia Y. M., Hakeem A., Zheng F. X., Cheng Y., Tang B. Z., Lou X. D., Xia F., ACS Appl. Mater. Interfaces, 2015, 7(30), 16813

    CAS  PubMed  Google Scholar 

  30. Min X. H., Zhang M. S., Huang F. J., Lou X. D., Xia F., ACS Appl. Mater. Interfaces, 2016, 8(14), 8998

    CAS  PubMed  Google Scholar 

  31. Wang X. D., Dai J., Min X. H., Yu Z. H., Cheng Y., Huang K. X., Yang J. L., Yi X.Q., Lou X. D., Xia F., Anal. Chem., 2018, 90(13), 8162

    CAS  PubMed  Google Scholar 

  32. Ma K., Zhang F. L., Sayyadi N., Chen W. J., Anwer A. G., Care A., Xu B., Tian W. J., Goldys E. M., Liu G. Z., ACS Sens., 2018, 3(2), 320

    CAS  PubMed  Google Scholar 

  33. Chen J., Jiang H., Zhou H. P., Hu Z. Z., Niu N., Shahzad S. A., Yu C., Chem. Commun., 2017, 53(15), 2398

    CAS  Google Scholar 

  34. Lu D. Q., He L., Wang Y. Y., Xiong M. Y., Hu M. M., Liang H., Huan S. Y., Zhang X. B., Tan W. H., Talanta, 2017, 167, 550

    CAS  PubMed  Google Scholar 

  35. Zhu L., Zhou J., Xu G., Li C., Ling P., Liu B., Ju H., Lei J., Chem. Sci., 2018, 9(9), 2559

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang X. J., Lou X. D., Xia F., Theranostics, 2017, 7(7), 1847

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Min X. H., Xia L., Zhuang Y., Wang X. D., Du J., Zhang X. J., Lou X. D., Xia F., Sci. Bull., 2017, 62(14), 997

    CAS  Google Scholar 

  38. Lou X. D., Zhuang Y., Zuo X. L., Jia Y. M., Hong Y. N., Min X. H., Zhang Z. Y., Xu X. M., Liu N. N., Xia F., Tang B. Z., Anal. Chem., 2015, 87(13), 6822

    CAS  PubMed  Google Scholar 

  39. Zhuang Y., Zhang M. S., Chen B., Duan R. X., Min X. H., Zhang Z. Y., Zheng F. X., Liang H. G., Zhao Z. J., Lou X. D., Xia F., Anal. Chem., 2015, 87(18), 9487

    CAS  PubMed  Google Scholar 

  40. Zhuang Y., Xu Q., Huang F. J., Gao P. C., Zhao Z. J., Lou X. D., Xia F., ACS Sens., 2016, 1(5), 572

    CAS  Google Scholar 

  41. Zhuang Y., Huang F. J., Xu Q., Zhang M. S., Lou X. D., Xia F., Anal. Chem., 2016, 88(6), 3289

    CAS  PubMed  Google Scholar 

  42. Zhuang Y., Shang C. L., Lou X. D., Xia F., Anal. Chem., 2017, 89(3), 2073

    CAS  PubMed  Google Scholar 

  43. Ou X. W., Hong F., Zhang Z. Y., Cheng Y., Zhao Z. J., Gao P. C., Lou X. D., Xia F., Wang S. T., Biosens. Bioelectron, 2017, 89, 417

    CAS  PubMed  Google Scholar 

  44. Wang H., Ma K., Xu B., Tian W. J., Small, 2016, 12(47), 6613

    CAS  PubMed  Google Scholar 

  45. Lou X. D., Leung C. W. T., Dong C., Hong Y. N., Chen S. J., Zhao E. G., Lamb J. W. Y., Tang B. Z., RSC Adv., 2014, 4, 33307

    CAS  Google Scholar 

  46. Gao Y. T., He Z. Y., He X. W., Zhang H. K., Weng J., Yang X. L., Meng F. L., Luo L., Tang B. Z., J. Am. Chem. Soc., 2019, 141(51), 20097

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2020YFA0211200), the National Natural Science Foundation of China(Nos. 21974128, 21874121), the Natural Science Foundation of Hubei Province, China(No.2019CFA043), and supported by the Open Research Fund of the State Key Laboratory of Bioelectronics(Southeast University), China and the Hubei Postdoctoral Innovative Research Foundation, China(to Wu Jun), and the Project Funded by China Postdoctoral Science Foundation(No.2020M672436).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoding Lou.

Additional information

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Wu, J., Chen, L. et al. Recent Development of DNA-modified AIEgen Probes for Biomedical Application. Chem. Res. Chin. Univ. 37, 66–72 (2021). https://doi.org/10.1007/s40242-021-0388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-0388-z

Keywords

Navigation