Skip to main content
Log in

Computational study on mechanisms of C2H5O2+OH reaction and properties of C2H5O3H complex

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

A comprehensive theoretical study on the bimolecular reaction of C2H5O2 with OH radicals was performed at the CCSD(T)/6-311++G(2df,2p)//B3LYP/6-311+G(d,p) level of theory. The calculation results show that C2H5O2 + OH reaction proceeds on both the singlet and the triplet potential energy surfaces(PESs). On the singlet PES, the favorable pathway is the addition of OH radical to the terminal oxygen atom of C2H5O2 radical, leading to the formation of trioxide C2H5O3H with a barrierless process. Then, the trioxide directly decomposes to the products C2H5O and HO2 radicals. On the triplet PES, the predominant pathways are α and β hydrogen atom abstractions of C2H5O2 radical by OH radical-forming products 3CH3CHO2+H2O and 3CH2CH2O2+H2O, and the corresponding barriers are 12.02(3TS8) and 19.19 kJ/mol(3TS9), respectively. In addition, the comprehensive properties of trioxide C2H5O3H were investigated for the first time. The results indicate that the trioxide complex RC1 can exist stably in the atmosphere owing to a significantly large and negative enthalpy of formation(‒118.44 kJ/mol) as well as a high first excitation energy(5.94 eV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wallington T. J., Dagaut P., Kurylo M. J., Chem. Rev., 1992, 92, 667

    Article  CAS  Google Scholar 

  2. Stone D., Whalley L. K., Heard D. E., Chem. Soc. Rev., 2012, 41, 6348

    Article  CAS  Google Scholar 

  3. Orlando J. J., Tyndall G. S., Wallington T. J., Chem. Rev., 2003, 103, 4657

    Article  CAS  Google Scholar 

  4. Zhang P., Wang W. L., Zhang T. L., Chen L., Du Y. M., Li C. Y., Lu J., J. Phys. Chem. A, 2012, 116, 4610

    Article  CAS  Google Scholar 

  5. Hou H., Wang B. S., J. Phys. Chem. A, 2005, 109, 451

    Article  CAS  Google Scholar 

  6. Hou H., Li J. C., Song X. L., Wang B. S., J. Phys. Chem. A, 2005, 109, 11206

    Article  CAS  Google Scholar 

  7. Tang Y., Zhang W., J. Fluorine Chem., 2015, 180, 110

    Article  CAS  Google Scholar 

  8. Bedjanian Y., Riffault V., Bras G. L., Poulet G., J. Phys. Chem. A, 2001, 105, 573

    Article  CAS  Google Scholar 

  9. Wang R., Li Y. L., Feng X. K., Song L., Zhang T. L., Wang Z. Q., Chem. J. Chinese Universities, 2017, 38(3), 429

    CAS  Google Scholar 

  10. Butkovskaya N., Kukui A., Bras G. L., J. Phys. Chem. A, 2010, 114, 956

    Article  CAS  Google Scholar 

  11. Stewart V., Canosa-Mas C. E., Christian P., Phys. Chem. Chem. Phys., 2006, 8, 3749

    Article  Google Scholar 

  12. Teresa R. M., Percival C. J., McGillen M. R., Hamerb P. D., Shallcross D. E., Phys. Chem. Chem. Phys., 2007, 9, 4338

    Article  Google Scholar 

  13. Drougas E., Kosmas A. M., J. Phys. Chem. A, 2007, 111, 3402

    Article  CAS  Google Scholar 

  14. Finlayson-Pitts B. J., Pitts J. N., Science, 1997, 276, 1045

    Article  CAS  Google Scholar 

  15. Ziemann P. J., Roger A., Chem. Soc. Rev., 2012, 41, 6582

    Article  CAS  Google Scholar 

  16. Zhao Y., Wingen L. M., Perraud V., Phys. Chem. Chem. Phys., 2015, 17, 12500

    Article  CAS  Google Scholar 

  17. Hasson A. S., Tyndall G. S., Orlando J. J., J. Phys. Chem. A, 2004, 108, 5979

    Article  CAS  Google Scholar 

  18. Archibald A. T., Petit A. S., Percival C. J., Sci. Letts., 2009, 10, 102

    Google Scholar 

  19. Bian H., Zhang S. G., Zhang H. M., Int. J. Quantum Chem., 2015, 115 1181

    Article  CAS  Google Scholar 

  20. Yan C., Kocevska S., Krasnoperov L. N., J. Phys. Chem. A, 2016, 120, 6111

    Article  CAS  Google Scholar 

  21. Nguyen T. L., McCarthy M. C., Stanton J. F., J. Phys. Chem. A, 2015, 119, 7197

    Article  CAS  Google Scholar 

  22. Müller J. F., Liu Z., Nguyen V. S., Stavrakou, T., Harvey, J. N., Pee-ters J., Nat. Commun., 2016, 7, 13213

    Article  Google Scholar 

  23. Faragó E. P., Schoemaecker C., Viskolcz B., Fittschen C., Chem. Phys. Lett., 2015, 619, 196

    Article  Google Scholar 

  24. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A., Gaussian 09, Gaussian Inc., Wallingford CT, 2009

    Google Scholar 

  25. Curtiss L. A., Raghavachari K., Redfern P. C., Pople J. A., J. Chem. Phys., 1997, 106, 1063

    Article  CAS  Google Scholar 

  26. Petersson G. A., Bennett A., Tensfeldt T. G., Al-Laham M. A., Shir-ley W. A., Mantzaris J., J. Phys. Chem., 1988, 89, 2193

    Article  CAS  Google Scholar 

  27. Montgomery J. A., Frisch M. J., Ochterski J. W., Petersson G. A., J. Chem. Phys., 2000, 112, 6532

    Article  CAS  Google Scholar 

  28. Curtiss L. A., Redfern P. C., Raghavachari K., J. Chem. Phys., 2007, 126, 084108

    Article  Google Scholar 

  29. Curtiss L. A., Redfern P. C., Aghavachari K. R., J. Chem. Phys., 2007, 127, 124105

    Article  Google Scholar 

  30. The National Institute of Standards and Technology, NIST Chemistry Webbook, http://webbook.nist.gov/chemistry

  31. Ruscic B., Pinzon R. E., Morton M. L., J. Phys. Chem. A, 2006, 110, 6592

    Article  CAS  Google Scholar 

  32. Nakajima M., Endo Y., J. Chem. Phys., 2013, 139, 101103

    Article  Google Scholar 

  33. Miliordos E., Xantheas S. S., Angew. Chem. Int. Ed., 2015, 54, 1

    Article  Google Scholar 

  34. Koller J., Hodošcek M., Plesnicar B., J. Am. Chem. Soc., 1990, 112, 2124

    Article  CAS  Google Scholar 

  35. Luo Y. R., J. Chem. Educ., 1981, 58, 26

    Article  CAS  Google Scholar 

  36. Engdahl A., Nelander B., Science, 2002, 295, 482

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenliang Wang.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21473108, 21473107) and the Fundamental Research Funds for the Central Universities of China(No.GK201603035).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, L., Chen, D. et al. Computational study on mechanisms of C2H5O2+OH reaction and properties of C2H5O3H complex. Chem. Res. Chin. Univ. 33, 623–630 (2017). https://doi.org/10.1007/s40242-017-7055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-017-7055-4

Keywords

Navigation