Skip to main content
Log in

Preparation and tribological properties of Cu-doped muscovite composite particles as lubricant additive

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Cu-doped muscovite(Mu) composite particles, abbreviated as Mu/Cu, were prepared via liquid phase reduction method. The morphologies, phase composition and elementary distribution of the as-prepared Mu/Cu and raw muscovite particles were characterized by means of scanning electron microscope(SEM), X-ray diffraction(XRD) and energy dispersive spectrometry(EDS). The tirbological properties of Mu/Cu and Mu as lubricant additives in lithium grease were evaluated on a block-ring tribomachine. The roughness, 2D and 3D morphologies and elementary distribution of block worn surface were analyzed to explore the tribogical mechanism. The results show that muscovite are evenly coated by the cubic Cu nanoparticles in composite particles. Both Mu/Cu and Mu can effectively improve the tirbological properties of lithium grease and Mu/Cu exhibits better tribological performance than Mu. The friction coefficient of Mu/Cu is decreased by 69.2% as compared to that of lithium grease. The layer structure of muscovite is synergistic with Cu nanoparticles in contribution to the formation of lubricant film mainly consisting of O, Si, Fe, Cu as well as Al elements on the block worn surface thereby further reducing the friction and wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liao L. B., J. Chin. Ceram. Soc., 2011, 39, 1523

    Article  CAS  Google Scholar 

  2. Du P. F., Chen G. X., Shao Y., Du W., Li F. T., Synth. Lubr., 2016, 43, 16

    Google Scholar 

  3. Yu H. L., Xu Y., Shi P. J., Wang H. M., Wei M., Zhao K., Xu B. S., Wear, 2013, 297, 802

    Article  CAS  Google Scholar 

  4. Yu H. L., Xu Y., Shi P. J., Wang H. M., Zhao Y., Xu B. S., Bai Z. M., Tribol. Int., 2010, 43, 667

    Article  CAS  Google Scholar 

  5. Zhang B. S., Xu Y., Gao F., Shi P. J., Xu B. S., Wu Y. X., Appl. Surf. Sci., 2011, 257, 2540

    Article  CAS  Google Scholar 

  6. Nan F., Xu Y., Xu B. S., Gao F., Wu Y. X., Li Z. G., Tribol. Int., 2015, 81, 199

    Article  CAS  Google Scholar 

  7. Nan F., Xu Y., Xu B. S., Gao F., Wu Y. X., Tang Y. H., Appl. Surf. Sci., 2014, 307, 86

    Article  CAS  Google Scholar 

  8. Wang D. J., Zhu D. C., Li H. F., Chen G. X., Tribol. Tran., 2015, 58, 577

    Article  CAS  Google Scholar 

  9. Du P. F., Chen G. X., Song S. Y., Chen H. L., Li J., Shao Y., Tribol. Lett., 2016, 62, 1

    Article  CAS  Google Scholar 

  10. Yang G. B., Chai S. T., Xiong X. J., Zhang S. M., Yu L. G., Zhang P. Y., T. Nonferr. Metal. Soc., 2012, 22, 366

    Article  CAS  Google Scholar 

  11. Chol Y., Lee C., Park M., Lee J., Choi C., Jung M., Curre. Appl. Phys., 2009, 9, 1124

    Google Scholar 

  12. Pan Q. H., Zhang X. F., Rare Metal. Mat. Eng., 2010, 39, 1711

    Article  CAS  Google Scholar 

  13. Da J., Zheng S. H., Wang Y. Z., Guo R. F., Cao B. Q., Appl. Surf. Sci., 2011, 257, 5720

    Article  Google Scholar 

  14. Zhang C. L., Zhang S. M., Yu L. G., Zhang Z. J., Wu Z. S., Zhang P. Y., Appl. Surf. Sci., 2012, 259, 824

    Article  CAS  Google Scholar 

  15. Zhang B. S., Xu B. S., Xu Y., Gao F., Wu Y. X., Shi P. J., Tribol. Int., 2011, 44, 878

    Article  CAS  Google Scholar 

  16. Xu Y., Zhang B. S., Xu B. S, Gao F., Shi P. J., J. Fun. Mat., 2011, 42, 1368

    CAS  Google Scholar 

  17. Zhang M., Tu X. N., Wang J. Y., Fang T., Wang Y. L., Xu X. D., Zhang M. L., Chen Y. T., Chem. Res. Chinese Universities, 2016, 32(3), 530

    Article  Google Scholar 

  18. Xin H., Chen L. B., Shi H. Y., Song W. B., Liu Q. M., Chem. J. Chinese Universities, 2014, 35(3), 482

    CAS  Google Scholar 

  19. Chen H. L., Chen G. X., Du P. F., Yang X., Shao Y., Tian Z. L., Tribol., 2015, 35, 651

    Google Scholar 

  20. Sinopec Research Institute of Petroleum Processing, Lubricating Greases—Determination of Dropping Point(Wide Temperature Range), 1983, GB/T 3498

    Google Scholar 

  21. Sinopec Research Institute of Petroleum Processing, Lubricating Grease and Petrolatum—Determination of Cone Penetration, 1991, GB/T 269

    Google Scholar 

  22. Central Iron & Steel Research Institute, Metallic Materials— Wear Test Method Block-on-ring Sliding Wear Test, 2006, GB/T 12444

    Google Scholar 

  23. Ju C. X., Wang J., Ma J., Plas. Addi., 2008, 1, 40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxu Chen.

Additional information

Supported by the Science and Technology Project of Chongqing City, China(No.CSTC2009AB4224) and the Scientific Research Project of Chongqing Municipal Education Commission, China(No.kj1754491).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, P., Chen, G., Song, S. et al. Preparation and tribological properties of Cu-doped muscovite composite particles as lubricant additive. Chem. Res. Chin. Univ. 33, 430–435 (2017). https://doi.org/10.1007/s40242-017-6418-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-017-6418-1

Keywords

Navigation