Skip to main content
Log in

Synthesis and biological evaluation of hydroxylcoumarin derivatives as antioxidant agents

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

In this study, esculetin(1) was chosen as a lead compound and some structural modifications were designed to explore the antioxidant activities of esculetin derivatives. Meanwhile, a convenient method for selective methylation of catechol coumarins with different bases was developed. Furthermore, a few 5,7-dihydroxylcoumarins were synthesized and 7-hydroxylcoumarins were employed in order to explore the potential structure-antioxidant activity relationships. The antioxidant activities of these compounds were evaluated and compared with standard antioxidant Trolox by the 2,2′-diphenyl-1-picrylhydrazyl(DPPH) assay, 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate) cation(ABTS+) assay and ferric reducing antioxidant power(FRAP) assay. The results show that the catechol group is the key pharmacophore. Meanwhile, introducing electronegative groups at the C4 position of esculetin(1) may enhance the antioxidative capacity, while introducing a group containing nitrogen as a hydrogen bond acceptor at the C8 position may slightly reduce the antioxidative capacity. Among them, the most powerful antioxidants are com-pounds 5 and 7, which exhibit higher antioxidant activity than esculetin(1) in all assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoelzl C., Bichler J., Ferk F., Simic T., Nersesyan A., Elbling L., Ehrlich V., Chakraborty A., Knasmüller S., J. Physiol. Pharmacol., 2005, 56, 49

    Google Scholar 

  2. Zhang Y., Zou B., Chen Z., Pan Y., Wang H., Liang H., Yi X., Bioorg. Med. Chem. Lett., 2011, 21, 6811

    Article  CAS  Google Scholar 

  3. Borges F., Roleira F., Milhazes N., Santana L., Uriarte E., Curr. Med. Chem., 2005, 12, 887

    Article  CAS  Google Scholar 

  4. Wu L., Wang X., Xu W., Farzaneh F., Xu R., Curr. Med. Chem., 2009, 16, 4236

    Article  CAS  Google Scholar 

  5. Riveiro M. E., de Kimpe N., Moglioni A., Vazquez R., Monczor F., Shayo C., Davio C., Curr. Med. Chem., 2010, 17(13), 1325

    Article  CAS  Google Scholar 

  6. Matos M. J., Santana L., Uriarte E., Delogu G., Corda M., Fadda M. B., Era B., Fais A., Bioorg. Med. Chem. Lett., 2011, 21, 3342

    Article  CAS  Google Scholar 

  7. Galkin A., Fallarero A., Vuorela P. M., J. Pharm. Pharmacol., 2009, 61(2), 177

    Article  CAS  Google Scholar 

  8. Panteleon V., Kostakis I. K., Marakos P., Pouli N., Andreadou I., Bioorg. Med. Chem. Lett., 2008, 18, 5781

    Article  CAS  Google Scholar 

  9. Symeonidis T., Chamilos M., Hadjipavlou-Litina D. J., Kallitsakis M., Litinas K. E., Bioorg. Med. Chem. Lett., 2009, 19, 1139

    Article  CAS  Google Scholar 

  10. Roussaki M., Kontogiorgis C. A., Hadjipavlou-Litina D., Hamilakis S., Detsi A., Bioorg. Med. Chem. Lett., 2010, 20, 3889

    Article  CAS  Google Scholar 

  11. Liu Z. H., Wang Y. N., Sun J. B., Yang Y., Liu Q. W., Liu Z. Q., Song Z. G., Chem. Res. Chinese Universities, 2015, 31(4), 526

    Article  CAS  Google Scholar 

  12. Masamoto Y., Ando H., Murata Y., Shimoishi Y., Tada M., Takahata K., Biosci. Biotechnol. Biochem., 2003, 67, 631

    Article  CAS  Google Scholar 

  13. Lin H. C., Tsai S. H., Chen C. S., Chang Y. C., Lee C. M., Lai Z. Y., Lin C. M., Biochem. Pharmacol., 2008, 75(6), 1416

    Article  CAS  Google Scholar 

  14. Potapovich M. V., Metelitza D. I., Shadyro O. I., Appl. Biochem. Mi-cro., 2012, 48(3), 250

    Article  CAS  Google Scholar 

  15. Wang P., Xia Y. L., Yu Y., Lu J. X., Zou L. W., Feng L., Ge G. B., Yang L., RSC Adv., 2015, 5, 53477

    Article  CAS  Google Scholar 

  16. Cao J. L., Shen S. L., Yang P., Qu J., Org. lett., 2013, 15(15), 3856

    Article  CAS  Google Scholar 

  17. Lu J. X., Wang P., Hou J., Zou L. W., Cui P., Yang L., Ge G. B., Gong X. J., Chem. Res. Chinese Universities, 2016, 32(5), 786

    Article  CAS  Google Scholar 

  18. Shahidi F., Liyana-Pathirana C. M., Wall D. S., Food Chem., 2006, 99, 478

    Article  CAS  Google Scholar 

  19. Ozgen M., Reese R. N., Tulio J. A. Z., Scheerens J. C., Miller A. R., J. Agric. Food Chem., 2006, 54, 1151

    Article  CAS  Google Scholar 

  20. Benzie I. F. F., Strain J., J. Anal. Biochem., 1996, 239, 70

    Article  CAS  Google Scholar 

  21. Koleva I. I., van Breek T. A., Linssen J. P. H., Groot A. D., Evstatieva L. N., Phytochem. Anal., 2002, 13, 8

    Article  CAS  Google Scholar 

  22. Lu Y., Huang J., Li Y., Ma T., Sang P., Wang W., Gao C., Food Chem., 2015, 183, 91

    Article  CAS  Google Scholar 

  23. Firuzi O., Lacanna A., Petrucci R., Marrosu G., Saso L., Biochim. Biophys. Acta, 2005, 1721, 174

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Wang or Guangbo Ge.

Additional information

Supported by the National Basic Research Program of China(No.2013CB531800), the National Natural Science Foundation of China(Nos.81402822, 81603187, 31471923, 31601517) and the Fundamental Research Funds for the Central Universities of China(No.DC201501020101).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Wang, P., Zou, L. et al. Synthesis and biological evaluation of hydroxylcoumarin derivatives as antioxidant agents. Chem. Res. Chin. Univ. 33, 194–199 (2017). https://doi.org/10.1007/s40242-017-6411-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-017-6411-8

Keywords

Navigation