Skip to main content
Log in

Poly(L-lactide)-grafted bioglass/poly(lactide-co-glycolide) scaffolds with supercritical CO2 foaming reprocessing for bone tissue engineering

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The bioglass particles/poly(lactide-co-glycolide)(BG/PLGA) scaffold has been extensively explored for biomedical applications due to its excellent advantages of mechanical property and controllable degradation rate. In our previous studies, the BG nanoparticle surface-grafted with poly(L-lactide)(PLLA) could substantially improve the phase compatibility between the polymer matrix and the inorganic phase and the biocompatibility of the scaffolds. However, using the traditional preparation methods to prepare the composite scaffold can barely achieve a high porosity and porous connectivity. In this work, the PLLA-grafted bioglass/PLGA(g-BG/PLGA) scaffolds were prepared by supercritical carbon dioxide foaming(Sc-CO2) with before or after particulate leaching(PL) method(Sc-CO2-PL or PL-Sc-CO2 method, PL/Sc-CO2 methods) and their applications in bone replacement and tissue engineering were investigated. The porosities of the g-BG/PLGA scaffolds prepared by the PL/Sc-CO2 methods were higher than 90%, and their mechanical properties had similar values with human cancellous bone. The proliferations of osteoblasts on the scaffolds were dependent on different preparation methods. The PL/Sc-CO2 methods significantly increased the proliferations of the cells. Computed tomography(CT) three-dimensional(3D) reconstruction tomographies of the implantation study for repairing calvarium defects of rabbits demonstrated that the calvarium defects were almost completely filled by the osteotylus in PL/Sc-CO2 method group at 12 week post-surgery, while there was little callus formation in PL method group and untreated control group. These results indicate that the g-BG/PLGA scaffolds prepared by the PL/Sc-CO2 methods exhibit rapid mineralization and osteoconductivity and are the optimal composites for bone repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li X. M., Wang L., Fan Y. B., Feng Q. L., Cui F. Z., Watari F., J. Biomed. Mater. Res., Part A, 2013, 101(8), 2424

    Article  Google Scholar 

  2. Bose S., Roy M., Bandyopadhyay A., Trends Biotechnol., 2012, 30(10), 546

    Article  CAS  Google Scholar 

  3. Li X. S., Liu Y., Guo C. F., Liu H. Y., Wang G., Cai Q., Yao Y. W., Chem. Res. Chinese Universities, 2016, 32(1), 127

    Article  Google Scholar 

  4. Jones J. R., Acta Biomater., 2013, 9(1), 4457

    Article  CAS  Google Scholar 

  5. Lacroix J., Jallot E., Lao J., Chem. Eng. J., 2014, 256(15), 9

    Article  CAS  Google Scholar 

  6. Vergnol G., Ginsac N., Rivory P., Meille S., Chenal J. M., Balvay S., Chevalier J., Hartmann D. J., J. Biomed. Mater. Res., Part B, 2016, 104(1), 180

    Article  CAS  Google Scholar 

  7. Hench L. L., Splinter R. J., Allen W., Greenlee T., J. Biomed. Mater. Res., Part A, 1971, 5(6), 117

    Article  Google Scholar 

  8. Hench L. L., Polak J. M., Science, 2002, 295(5557), 1014

    Article  CAS  Google Scholar 

  9. Xynos I. D., Edgar A. J., Buttery L. D., Hench L. L., Polak J. M., J. Biomed. Mater. Res., Part A, 2001, 55(2), 151

    Article  CAS  Google Scholar 

  10. Day R. M., Maquet V., Boccaccini A. R., Jérôme R., Forbes A., J. Biomed. Mater. Res., Part A, 2005, 75(4), 778

    Article  Google Scholar 

  11. Yao J., Radin S., Leboy P. S., Ducheyne P., Biomaterials, 2005, 26(14), 1935

    Article  CAS  Google Scholar 

  12. Abd-Elaal A. A., Tawfik S. M., Shaban S. M., Appl. Surf. Sci., 2015, 342(1), 144

    Article  CAS  Google Scholar 

  13. Zheng C., Zhou X. F., Cao H. L., Wang G. H., Liu Z. P., J. Power Sources, 2014, 258(15), 290

    Article  CAS  Google Scholar 

  14. Balazs A. C., Emrick T., Russell T. P., Science, 2006, 314(5802), 1107

    Article  CAS  Google Scholar 

  15. Kumar S. K., Jouault N., Benicewicz B., Neely T., Macromolecules, 2013, 46(9), 3199

    Article  CAS  Google Scholar 

  16. Rahman I. A., Padavettan V., J. Nanomater., 2012, 2012, 8

    Article  Google Scholar 

  17. Liu A. X., Hong Z. K., Zhuang X. L., Chen X. S., Cui Y., Liu Y., Jing X. B., Acta Biomater., 2008, 4(4), 1005

    Article  CAS  Google Scholar 

  18. Dong S. J., Yu T., Wei J. C., Jing X. B., Zhou Y. M., Zhang P. B., Chen X. S., Chem. J. Chinese Universities, 2009, 30(5), 1018

    CAS  Google Scholar 

  19. Duarte A. R. C., Mano J., Reis R., Int. Mater. Rev., 2009, 54(4), 214

    Article  CAS  Google Scholar 

  20. Kim S. H., Kim S. H., Jung Y., J. Controlled Release, 2015, 206(28), 101

    Article  CAS  Google Scholar 

  21. Garcia-Gonzalez C. A., Concheiro A., Alvarez-Lorenzo C., Bioconjugate Chem., 2015, 26(7), 1159

    Article  CAS  Google Scholar 

  22. Xin X., Liu Q. Q., Chen C. X., Guan Y. X., Yao S. J., J. Appl. Polym. Sci., 2016, 133(27), 43644

    Article  Google Scholar 

  23. Delabarde C., Plummer C. J., Bourban P. E., Månson J. A. E., J. Mater. Sci. Mater. Med., 2012, 23(6), 1371

    Article  CAS  Google Scholar 

  24. Shapira A., Kim D. H., Dvir T., Biofabrication, 2014, 6(2), 020301

    Article  Google Scholar 

  25. Ross C. A., Berggren K. K., Cheng J. Y., Jung Y. S., Chang J. B., Adv. Mater., 2014, 26(25), 4386

    Article  CAS  Google Scholar 

  26. Brodie I., Muray J. J., The Physics of Micro/Nano-Fabrication, Springer Science & Business Media, Heidelberg, 2013, 326

    Google Scholar 

  27. Hong Z. K., Zhang P. B., Liu A. X., Chen L., Chen X. S., Jing X. B, J. Biomed. Mater. Res., Part A, 2007, 81(3), 515

    Article  Google Scholar 

  28. Loh Q. L., Choong C., Tissue Eng., Part B Rev., 2013, 19(6), 485

    Article  CAS  Google Scholar 

  29. Moreau J. L., Xu H. H., Biomaterials, 2009, 30(14), 2675

    Article  CAS  Google Scholar 

  30. Cui Y., Liu Y., Cui Y., Jing X. B., Zhang P. B., Chen X. S., Acta Biomater., 2009, 5(7), 2680

    Article  CAS  Google Scholar 

  31. Mosmann T., J. Immunol. Methods, 1983, 65(1/2), 55

    Article  CAS  Google Scholar 

  32. Ungvári K., Pelsöczi I. K., Kormos B., Oszkó A., Rakonczay Z., Kemény L., Radnai M., Nagy K., Fazekas A., Turzó K., J. Biomed. Mater. Res., Part B, 2010, 94(1), 222

    Google Scholar 

  33. Micol L. A., Da Silva L. F. A., Geutjes P. J., Oosterwijk E., Hubbell J. A., Feitz W. F., Frey P., Biomaterials, 2012, 33(30), 7447

    Article  CAS  Google Scholar 

  34. Pripatnanont P., Nuntanaranont T., Vongvatcharanon S., Phurisat K., J. Craniomaxillofac Surg., 2013, 41(8), e191

    Article  Google Scholar 

  35. Ruhé P. Q., Kroese-Deutman H. C., Wolke J. G., Spauwen P. H., Jansen J. A., Biomaterials, 2004, 25(11), 2123

    Article  Google Scholar 

  36. Oh S. H., Park I. K., Kim J. M., Lee J. H., Biomaterials, 2007, 28(9), 1664

    Article  CAS  Google Scholar 

  37. Shah A.T., Batool M., Chaudhry A. A., Iqbal F., Javaid A., Zahid S., Ilyas K., Qasim S. B., Khan A. F., Khan A.S., Rehman I. U., J. Mech. Behav. Biomed, 2016, 61, 617

    Article  CAS  Google Scholar 

  38. Zhu H. L., Hua C., Zhang F. F., Feng X. X., Li J. M., Liu T., Chen J. Y., Zhang J. C., Mater. Sci. Eng., 2014, 42(1), 22

    Article  CAS  Google Scholar 

  39. Kim S. S., Park M. S., Jeon O., Choi C. Y., Kim B. S., Biomaterials, 2006, 27(8), 1399

    Article  CAS  Google Scholar 

  40. Lin C. Y., Schek R. M., Mistry A. S., Shi X., Mikos A. G., Krebsbach P. H., Hollister S. J., Tissue Eng., 2005, 11(9/10), 1589

    Article  CAS  Google Scholar 

  41. Pham K. N., Fullston D., Sagoe-Crentsil K., J. Colloid Interface Sci., 2007, 315(1), 123

    Article  CAS  Google Scholar 

  42. Tsuruga E., Takita H., Itoh H., Wakisaka Y., Kuboki Y., J. Biochem., 1997, 121(2), 317

    Article  CAS  Google Scholar 

  43. Yang Y., Zhang H., Wang P., Zheng Q., Li J., J. Membr. Sci., 2007, 288(1), 231

    Article  CAS  Google Scholar 

  44. Petite H., Viateau V., Bensaid W., Meunier A., de Pollak C., Bourguignon M., Oudina K., Sedel L., Guillemin G., Nat. Biotechnol., 2000, 18(9), 959

    Article  CAS  Google Scholar 

  45. Zamani F., Amani-Tehran M., Latifi M., Shokrgozar M. A., J. Mater. Sci. Mater. Med., 2013, 24(6), 1551

    Article  CAS  Google Scholar 

  46. Deligianni D., Katsala N., Ladas S., Sotiropoulou D., Amedee J., Missirlis Y., Biomaterials, 2001, 22(11), 1241

    Article  CAS  Google Scholar 

  47. Kim T. H., Kim S. H., Leong K. W., Jung Y., Tissue Eng. Part A, 2016, 22(7/8), 698

    Article  CAS  Google Scholar 

  48. Lenhert S., Meier M. B., Meyer U., Chi L., Wiesmann H. P., Biomaterials, 2005, 26(5), 563

    Article  CAS  Google Scholar 

  49. Rice J., Hunt J., Gallagher J., Hanarp P., Sutherland D., Gold J., Biomaterials, 2003, 24(26), 4799

    Article  CAS  Google Scholar 

  50. Woo K. M., Chen V. J., Ma P. X., J. Biomed. Mater. Res., Part A, 2003, 67(2), 531

    Article  Google Scholar 

  51. Singh D., Tripathi A., Zo S., Singh D., Han S. S., Colloid Surf., B, 2014, 116(1), 502

    Article  CAS  Google Scholar 

  52. Yao C. H., Liu B. S., Hsu S. H., Chen Y. S., Biomaterials, 2005, 26(16), 3065

    Article  CAS  Google Scholar 

  53. Hayati A. N., Hosseinalipour S., Rezaie H., Shokrgozar M., Mater. Sci. Eng., C, 2012, 32(3), 416

    Article  Google Scholar 

  54. Salerno A., Guarnieri D., Iannone M., Zeppetelli S., Netti P. A., Tissue Eng., Part A, 2010, 16(8), 2661

    Article  CAS  Google Scholar 

  55. Araujo M., Sonohara M., Hayacibara R., Cardaropoli G., Lindhe J., J. Clin. Periodontol, 2002, 29(12), 1122

    Article  CAS  Google Scholar 

  56. Lim H. P., Mercado-Pagan A. E., Yun K. D., Kang S. S., Choi T. H., Bishop J., Koh J. T., Maloney W., Lee K. M., Yang Y. P., J. Mater. Sci. Mater. Med., 2013, 24(8), 1895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmin Zhou.

Additional information

Supported by the Key Scientific and Technological Projects of Jilin Province, China(No.20170204041GX), the National Natural Science Foundation of China(Nos.81400487, 51673190, 51673187), the State Scholarship Fund of China(No. 201506175119) and the Research Fund of Jilin University, China(Nos.3D516B703431, 3R2161193431).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Wang, L., Li, Q. et al. Poly(L-lactide)-grafted bioglass/poly(lactide-co-glycolide) scaffolds with supercritical CO2 foaming reprocessing for bone tissue engineering. Chem. Res. Chin. Univ. 33, 499–506 (2017). https://doi.org/10.1007/s40242-017-6341-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-017-6341-5

Keywords

Navigation