Skip to main content
Log in

Hydrothermal syntheses of CuO, CuO/Cu2O, Cu2O, Cu2O/Cu and Cu microcrystals using ionic liquids

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

In this paper, CuO, CuO/Cu2O, Cu2O, Cu2O/Cu and Cu microcrystals were synthesized via a hydrothermal method by mixing Cu(NO3)2·3H2O and NaOH together in the presence of an ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate([BMIM]BF4) or 1-butyl-3-methylimidazolium chloride([BMIM]Cl). The structures and the morphologies of the obtained products were characterized by means of X-ray diffractometer( XRD), field-emission scanning electron microscopy/energy-dispersive spectroscopy(FESEM/EDS), transmission electron microscopy/selected area electron diffraction(TEM/SAED) and Raman spectroscopy. The result of XRD indicates that Cu2O and Cu microcrystals are cubic phase and the Raman spectra confirm the presence of carbon. The results of FESEM and TEM images show Cu2O microcrystals as rule cubes of 2 μm in length and Cu particles of 5 μm in diameter. According to the difference between crystal structures, bi-component and single component products were synthesized by adjusting the reaction conditions. A possible formation mechanism of Cu2O and Cu was proposed in [BMIM]BF4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu X. L., Zhang T. Y., Chen J. J., Gao H. G., Cai W. F., Ceram. Int., 2016, 42, 8505

    Article  CAS  Google Scholar 

  2. Uschakov A. V., Karpov I. V., Lepeshev A. A., Zharkov S. M., Vacuum, 2016, 128, 123

    Article  CAS  Google Scholar 

  3. Mayousse C., Celle C., Carella A., Simonato J. P., Nano Res., 2014, 7(3), 315

    Article  CAS  Google Scholar 

  4. Yang R. C., Tang D. X., Tao T. X., Ren Y. M., Zhang X., Xu M. D., Wang C., Mater. Lett., 2013, 113, 156

    Article  CAS  Google Scholar 

  5. Wu H. W., Lee S. Y., Lu W. C., Chang K. S., Appl. Surf. Sci., 2015, 344, 236

    Article  CAS  Google Scholar 

  6. Kumar B., Saha S., Ojha K., Ganguli A. K., Mater. Res. Bull., 2015, 64, 283

    Article  CAS  Google Scholar 

  7. Maryam S., Ashraf S. S., Kamelia M., Spectrochim. Acta, 2015, 135, 662

    Article  Google Scholar 

  8. Ananya G., Pranati N., Ramaprabhu S., Int. J. Hydrogen Energy, 2016, 41, 3974

    Article  CAS  Google Scholar 

  9. Yao W. T., Yu S. H., Zhou Y., Jiang J., Wu Q. S., Zhang L., Jiang J., J. Phys. Chem. B, 2005, 109, 14011

    Article  CAS  Google Scholar 

  10. Zhou L. J., Zou Y. C., Zhao J., Wang P. P., Feng L. L., Sun L. W., Wang D. J., Li G. D., Sens. Actuators B, 2013, 188, 533

    Article  CAS  Google Scholar 

  11. Saeed D., Ali M., Mohsen M. G., Najmeddin B., Sasan S., Ahlam N., Powder Technol., 2013, 246, 148

    Article  Google Scholar 

  12. Liu X. W., Geng B. Y., Du Q. B., Ma J. Z., Liu X. M., Mater. Sci. Eng., 2007, 448, 7

    Article  Google Scholar 

  13. Zhang L. N., Tao J. H., Ji K. J., Yue Q. F., Chem. J. Chinese Universities, 2014, 35(6), 1318

    Google Scholar 

  14. Hasimu Y. S. J., Liu R. Q., Mi H. Y., Chem. J. Chinese Universities, 2014, 35(1), 140

    CAS  Google Scholar 

  15. Wu L. Y., Liu Z. F., Qin Q., Cao Y. A., Chem. J. Chinese Universities, 2014, 35(5), 934

    CAS  Google Scholar 

  16. Petkovic M., Seddon K. R., Rebeloa P. N., Pereira C. S., Chem. Soc. Rev., 2011, 40, 1383

    Article  CAS  Google Scholar 

  17. Ma Z., Yu J. H., Dai S., Adv. Mater., 2010, 22, 261

    Article  CAS  Google Scholar 

  18. Dong K., Zhang S. J., Chem. Eur. J., 2012, 18, 2748

    Article  CAS  Google Scholar 

  19. Pearson A., Mullane A. P., Bhargava S. K., Chem. Commun., 2010, 46, 731

    Article  CAS  Google Scholar 

  20. Xu P. P., Wang C. F., Sun D., Chen Y. J., Zhuo K. L., Chem. Res. Chinese Universities, 2015, 31(5), 730

    Article  CAS  Google Scholar 

  21. Sundrarajan M., Jegatheeswaran S., Selvam S., Sanjeevi N., Balaji M., Mater. Design, 2015, 88, 1183

    Article  CAS  Google Scholar 

  22. Li Z. H., Jia Z., Luan Y. X., Mu T. C., Curr. Opin. Solid State Mater. Sci., 2008, 12, 1

    Article  Google Scholar 

  23. Taubert A., Uhlmann A., Hedderich A., Kirchhoff K., Inorg. Chem., 2008, 47, 10758

    Article  CAS  Google Scholar 

  24. Zhang M., Xu X. D., Zhao Z. H., Zhang M. L., Fine Chem., 2007, 24, 69

    Google Scholar 

  25. Jacob D. S., Genish I., Klein, L., Gedanken A., J. Phys. Chem. B, 2006, 110, 17711

    Article  CAS  Google Scholar 

  26. Maryam S., Behnoosh M. B., Mater. Lett., 2014, 117, 28

    Article  Google Scholar 

  27. Zhang M., Xu X. D., Zhao Z. H., Zhang M. L., J. Dispersion Sci. Technol., 2007, 28, 1223

    Article  CAS  Google Scholar 

  28. Xu X. D., Zhang M., Feng J., Zhang M. L., Mater. Lett., 2008, 62, 2787

    Article  CAS  Google Scholar 

  29. Zhang M., Xu X. D., Zhang M. L., Mater. Lett., 2008, 62, 385

    Article  CAS  Google Scholar 

  30. Zhang M., Xu X. D., Zhang M. L., J. Dispersion Sci. Technol., 2008, 29, 508

    Article  Google Scholar 

  31. Li Z. H., Liu Z. M., Zhang J. L., Han B. X., Du J. M., Gao Y. N., J. Phys. Chem. B, 2005, 109, 14445

    Article  CAS  Google Scholar 

  32. Yang L. X., Zhu Y. J., Wang W. W., Tong H., Ruan M. L., J. Phys. Chem. B, 2006, 110, 6609

    Article  CAS  Google Scholar 

  33. Jacob D. S., Bitton L., Grinblat J., Felner I., Koltypin Y., Gedanken A., Chem. Mater., 2006, 18, 3162

    Article  CAS  Google Scholar 

  34. Huddleston J. G., Willauer H. D., Swatloski R. P., Visser A. E., Rogers R. D., Chem. Commun., 1998, 16, 1765

    Article  Google Scholar 

  35. Shanmugam S., Gedanken A., J. Phys. Chem. B., 2006, 110, 2037

    Article  CAS  Google Scholar 

  36. Fredlake C. P., Crosthwaite J. M., Hert D. G., J. Chem. Eng. Data, 2004, 49, 954

    Article  CAS  Google Scholar 

  37. Fuller J., Carkin R. T., Osteryoung R. A., J. Electrochem. Soc., 1997, 144, 3881

    Article  CAS  Google Scholar 

  38. Ficke L. E., Novak R. R., Brennecke J. F., J. Chem. Eng. Data, 2010, 55, 4946

    Article  CAS  Google Scholar 

  39. Wang Y., Li H. R., Han S. J., J. Phys. Chem. B, 2006, 110, 24646

    Article  CAS  Google Scholar 

  40. Huang J. F., Chen P. Y., Sun I. W., Wang, S. P., Inorg. Chim. Acta, 2001, 320, 7

    Article  CAS  Google Scholar 

  41. Sun B. J., Jin Q., Tan L. S., Wu P. Y., Yan F., J. Phys. Chem. B, 2008, 112, 14251

    Article  CAS  Google Scholar 

  42. Gillespie R. J., Hartman J. S., Can. J. Chem., 1967, 45, 859

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Xu.

Additional information

Supported by the National Natural Science Foundation of China(Nos.51104050, 51301050, 51202047), the Natural Science Foundation of Heilongjiang Province, China(Nos.E201413, E201419), the Technology Foundation for Selected Overseas Chinese Scholar of Heilongjiang Province, China(No.159150130002) and the Fundamental Research Funds for the Central Universities of China(No.HEUCF161501).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Tu, X., Wang, J. et al. Hydrothermal syntheses of CuO, CuO/Cu2O, Cu2O, Cu2O/Cu and Cu microcrystals using ionic liquids. Chem. Res. Chin. Univ. 32, 530–533 (2016). https://doi.org/10.1007/s40242-016-6037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-6037-2

Keywords

Navigation