Skip to main content

Advertisement

Log in

Identification of bioactive compounds from Vaccinium vitis-idaea L. (Lingonberry) as inhibitors for treating KRAS-associated cancer: a computational approach

  • Original Research
  • Published:
In Silico Pharmacology Aims and scope Submit manuscript

Abstract

Lung cancer is the cancer of the lung’s epithelial cells typically characterized by difficulty breathing, chest pain, blood-stained coughs, headache, and weight loss. If left unmanaged, lung cancer can spread to other body parts. While several treatment methods exist for managing lung cancer, exploring natural plant sources for developing therapeutics offers great potential in complementing other treatment approaches. In this study, we evaluated the bioactive compounds in Vaccinium vitis-idaea for treating KRAS-associated lung cancer types. In this study, we concentrated on inhibiting the mutated Kirsten rat sarcoma viral oncogene homolog (KRAS) by targeting an associated protein (Phosphodiesterase 6δ) to which KRAS form complexes. We evaluated bioactive compounds from Lingonberry (Vaccinium vitis-idaea L.), adopting computational approaches such as molecular docking, molecular dynamics simulation, molecular mechanics/generalized Born surface area (MM/GBSA) calculations, and pharmacokinetics analysis. A total of 26 out of 39 bioactive compounds of Vaccinium vitis-idaea L. had a higher binding affinity to the target receptor than an approved drug, Sotorasib. Also, further analyses of all lead/top compounds in this study identified (+)—Catechin (Cianidanol), Arbutin, Resveratrol, and Sinapic acid, to be potential drug candidates that could be pursued. In sum, Arbutin, (+)—Catechin, and Sinapic acid are predicted to be the top compound of Vaccinium vitis-idaea L. because of their pharmacokinetic properties and drug-likeness attributes. Also, their stability to the target receptor makes them a potential drug candidate that could be explored for treating KRAS mutation-associated lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Available upon request.

Abbreviations

KRAS:

Kirsten rat sarcoma viral oncogene homolog

PDE6D:

Phosphodiesterase 6δ

RMSD:

Root mean square deviation

RMSF:

Root mean square fluctuation

MW:

Molecular weight

HBD:

Hydrogen bond donor (HBD)

HBA:

Hydrogen bond acceptor (HBA)

iLOGP:

Lipophilicity (iLOGP)

MR:

Molar refractivity

References

  • AACR Project GENIE Consortium (2017) AACR project GENIE: powering precision medicine through an International Consortium. Cancer Discov 7(8):818–831. https://doi.org/10.1158/2159-8290.CD-17-0151

    Article  Google Scholar 

  • Awad MM et al (2021) Acquired resistance to KRASG12C inhibition in cancer. N Engl J Med 384(25):2382–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babar L, Modi P, Anjum F (2020) Lung cancer screening. StatPearls. Treasure Island (FL)

  • Bakchi B, Krishna AD, Sreecharan E, Ganesh VBJ, Niharika M, Maharshi S, Shaik AB (2022) An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: a medicinal chemist’s perspective. J Mol Struct 1259:132712

    Article  CAS  Google Scholar 

  • Barbacid M (1987) Ras genes. Annu Rev Biochem 56(1):779–827

    Article  CAS  PubMed  Google Scholar 

  • Bodun DS, Omoboyowa DA, Omotuyi OI, Olugbogi EA, Balogun TA, Ezeh CJ, Omirin ES (2023) QSAR-based virtual screening of traditional Chinese medicine for the identification of mitotic kinesin Eg5 inhibitors. Comput Biol Chem 104:107865

    Article  CAS  PubMed  Google Scholar 

  • Chang EH, Gonda MA, Ellis RW, Scolnick EM, Lowy DR (1982) Human genome contains four genes homologous to transforming genes of Harvey and Kirsten murine sarcoma viruses. Proc Natl Acad Sci 79(16):4848–4852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Leo N et al (2017) A catechin nanoformulation inhibits WM266 melanoma cell proliferation, migration and associated neo-angiogenesis. Eur J Pharmaceut Biopharmaceut 114:1–10

    Article  Google Scholar 

  • Gustavsson BA (2001) Genetic variation in horticulturally important traits of fifteen wild lingonberry Vaccinium vitis-idaea L. populations. Euphytica 120(2):173–182

    Article  Google Scholar 

  • Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553(7689):446–454

    Article  CAS  PubMed  Google Scholar 

  • Indu P, Rameshkumar MR, Arunagirinathan N, Al-Dhabi NA, Arasu MV, Ignacimuthu S (2020) Raltegravir, Indinavir, Tipranavir, Dolutegravir, and Etravirine against main protease and RNA-dependent RNA polymerase of SARS-CoV-2: a molecular docking and drug repurposing approach. J Infect Public Health 13(12):1856–1861

    Article  PubMed  PubMed Central  Google Scholar 

  • Ismail SA et al (2011) Arl2-GTP and Arl3-GTP regulate a GDI-like transport system for farnesylated cargo. Nat Chem Biol 7(12):942–949

    Article  CAS  PubMed  Google Scholar 

  • Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9(7):517–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kehinde I, Ramharack P, Nlooto M, Gordon M (2019) The pharmacokinetic properties of HIV-1 protease inhibitors: a computational perspective on herbal phytochemicals. Heliyon 5(10):1

    Article  Google Scholar 

  • Khuder SA (2001) Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer 31(2–3):139–148

    Article  CAS  PubMed  Google Scholar 

  • Kirsten WH, Schauf V, McCoy J (1970) “Properties of a murine sarcoma virus 1”. Comparative Leukemia research 1969, vol 36. Karger Publishers, London, pp 246–249

    Google Scholar 

  • Koga T et al (2021) KRAS secondary mutations that confer acquired resistance to KRAS G12C inhibitors, sotorasib and adagrasib, and overcoming strategies: insights from in vitro experiments. J Thor Oncol 16(8):1321–1332

    Article  CAS  Google Scholar 

  • Korzeniecki C, Priefer R (2021) Targeting KRAS mutant cancers by preventing signaling transduction in the MAPK pathway. Eur J Med Chem 211:113006

    Article  CAS  PubMed  Google Scholar 

  • Kowalska K (2021) Lingonberry (Vaccinium vitis-idaea L.) Fruit as a source of bioactive compounds with health-promoting effects—a review. Int J Mol Sci 22(10):5126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Kalra S, Jangid K, Jaitak V (2023) Flavonoids as P-glycoprotein inhibitors for multidrug resistance in cancer: an in-silico approach. J Biomol Struct Dyn 41(16):7627–7639. https://doi.org/10.1080/07391102.2022.2123390

    Article  CAS  PubMed  Google Scholar 

  • Kwan AK et al (2022) The path to the clinic: a comprehensive review on direct KRASG12C inhibitors. J Exp Clin Cancer Res 41(1):1–23

    Article  Google Scholar 

  • Li F-S, Weng J-K (2017) Demystifying traditional herbal medicine with modern approach. Nat Plants 3(8):1–7

    Article  Google Scholar 

  • Li B, Skoulidis F, Falchook G, Sacher A, Velcheti V, Dy G, Wolf J (2021) PS01.07 registrational phase 2 trial of sotorasib in KRAS p. G12C mutant NSCLC: first disclosure of the codebreak 100 primary analysis. J Thor Oncol 16(3):S61

    Article  Google Scholar 

  • Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341

    Article  CAS  PubMed  Google Scholar 

  • McBride OW et al (1983) Regional chromosomal localization of N-ras, K-ras-1, K-ras-2 and myb oncogenes in human cells. Nucl Acids Res 11(23):8221–8236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy MJ et al (2019) Discovery of high-affinity noncovalent allosteric KRAS inhibitors that disrupt effector binding. ACS Omega 4(2):2921–2930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDougall GJ et al (2008) Berry extracts exert different antiproliferative effects against cervical and colon cancer cells grown in vitro. J Agric Food Chem 56(9):3016–3023

    Article  CAS  PubMed  Google Scholar 

  • Omoboyowa DA, Balogun TA, Saibu OA, Chukwudozie OS, Alausa A, Olubode SO, Musa SO (2022a) Structure-based discovery of selective CYP17A1 inhibitors for castration-resistant prostate cancer treatment. Biol Methods Protocols 7(1):bpab026

    Article  Google Scholar 

  • Omoboyowa DA, Iqbal MN, Balogun TA, Bodun DS, Fatoki JO, Oyeneyin OE (2022b) Inhibitory potential of phytochemicals from Chromolaena odorata L. against apoptosis signal-regulatory kinase 1: a computational model against colorectal cancer. Comput Toxicol 23:100235

    Article  CAS  Google Scholar 

  • Omoboyowa DA, Bodun DS, Saliu JA (2023) Structure-based in silico investigation of antagonists of human ribonucleotide reductase from Annona muricata. Inform Med Unlocked 38:101225

    Article  Google Scholar 

  • Papke B et al (2016) Identification of pyrazolopyridazinones as PDEδ inhibitors. Nat Commun 7(1):1–9

    Article  Google Scholar 

  • Raudone L, Vilkickyte G, Pitkauskaite L, Raudonis R, Vainoriene R, Motiekaityte V (2019) Antioxidant activities of Vaccinium vitis-idaea L. leaves within cultivars and their phenolic compounds. Molecules 24(5):844

    Article  PubMed  PubMed Central  Google Scholar 

  • Robichaux JP et al (2018) Mechanisms and clinical activity of an EGFR and HER2 exon 20-selective kinase inhibitor in non-small cell lung cancer. Nat Med 24(5):638–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmick M et al (2014) KRas localizes to the plasma membrane by spatial cycles of solubilization, trapping and vesicular transport. Cell 157(2):459–471

    Article  CAS  PubMed  Google Scholar 

  • Shea M, Costa DB, Rangachari D (2016) Management of advanced non-small cell lung cancers with known mutations or rearrangements: latest evidence and treatment approaches. Ther Adv Respir Dis 10(2):113–129

    Article  CAS  PubMed  Google Scholar 

  • Skoulidis F et al (2021) Sotorasib for lung cancers with KRAS p. G12C mutation. N Engl J Med 384(25):2371–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ștefănescu B-E et al (2020) Chemical composition and biological activities of the Nord-West Romanian wild bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) leaves. Antioxidants 9(6):495

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun H et al (2020) Anti-cancer activity of catechin against A549 lung carcinoma cells by induction of cyclin kinase inhibitor p21 and suppression of Cyclin E1 and P-AKT. Appl Sci 10(6):2065

    Article  CAS  Google Scholar 

  • Van Meerbeeck JP, Fennell DA, De Ruysscher DKM (2011) Small-cell lung cancer. Lancet 378(9804):1741–1755

    Article  PubMed  Google Scholar 

  • Vander Laan PA et al (2017) Mutations in TP53, PIK3CA, PTEN and other genes in EGFR mutated lung cancers: correlation with clinical outcomes. Lung Cancer 106:17–21

    Article  PubMed  Google Scholar 

  • Warren GW, Sobus S, Gritz ER (2014) The biological and clinical effects of smoking by patients with cancer and strategies to implement evidence-based tobacco cessation support. Lancet Oncol 15(12):e568–e580

    Article  PubMed  PubMed Central  Google Scholar 

  • Whaby M, Khan I, O’Bryan JP (2021) Targeting the “undruggable” RAS with biologics. Adv Cancer Res 153:237–266

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav RP, Artemyev NO (2017) AIPL1: a specialized chaperone for the phototransduction effector. Cell Signal 40:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoda S, Dagogo-Jack I, Hata AN (2019) Targeting oncogenic drivers in lung cancer: recent progress, current challenges and future opportunities. Pharmacol Ther 193:20–30

    Article  CAS  PubMed  Google Scholar 

  • Zhu L et al (2022) Inhibitory effect of lingonberry extract on HepG2 cell proliferation, apoptosis, migration, and invasion. PLoS ONE 17(7):e0270677. https://doi.org/10.1371/journal.pone.0270677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann G et al (2013) Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling. Nature 497(7451):638–642

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate Dotun Olaoye’s helpful input during the manuscript preparation.

Funding

This study received no funding.

Author information

Authors and Affiliations

Authors

Contributions

GD and TAB designed the study. AI, SS, DSB, and BA performed virtual screening and chemical library curation. AI, GD, SS, DSB, and TAB performed molecular docking, pharmacokinetic analysis, molecular dynamics simulation, and post-simulation analysis. AI wrote the first draft. GD and TAB critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Gbenga Dairo or Toheeb A. Balogun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilesanmi, A., Dairo, G., Salimat, S. et al. Identification of bioactive compounds from Vaccinium vitis-idaea L. (Lingonberry) as inhibitors for treating KRAS-associated cancer: a computational approach. In Silico Pharmacol. 11, 32 (2023). https://doi.org/10.1007/s40203-023-00165-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40203-023-00165-1

Keywords

Navigation