Skip to main content
Log in

Adsorption of organophosphorus malathion pesticide from aqueous solutions using nano-polypropylene-titanium dioxide composite: Equilibrium, kinetics and Optimization studies

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to investigate the applicability of the adsorption process of a persistent organophosphorus pesticide (malathion) from aqueous solutions by using titanium dioxide- polypropylene nanocomposite (Nano-PP/TiO2).

Methods

The structure of Nano-PP/TiO2 was specified by field emission scanning electron microscopes (FE-SEM), fourier-transform infrared spectroscopy (FTIR), brunauer-emmett-teller (BET), and transmission electron microscope (TEM) technologies. Response surface methodology (RSM) was applied to optimize the adsorption of malathion onto Nano-PP/TiO2 and investigates the effects of various experimental parameters including contact time (5-60 min), adsorbent dose (0.5-4 g/l) and initial malathion concentration (5-20000 mg/l). Extraction and analysis of malathion were performed by dispersive liquid-liquid microextraction (DLLME) coupled with a gas chromatography, coupled with flame ionization detector (GC/FID).

Results

The isotherms obtained for Nano-PP/TiO2 revealed that it was a mesoporous material with a total pore volume of 2.06 cm3/g, average pore diameters of 2.48 nm and a surface area of 51.52 m2/g. The obtained results showed that the Langmuir type 2 was the best-fitted model for delegating the equilibrium data of isotherm studies with adsorption capacity of 7.43 mg/g, and pseudo-second-order type 1 for kinetic model. The optimized conditions to achieve the maximum removal (96%) were at a malathion concentration of 7.13 mg/L, contact time of 52 min and adsorbent dose of 0.5 g/L.

Conclusion

Due to its efficient and appropriate function in adsorbing malathion from aqueous solutions, it was revealed that Nano-PP/TiO2 can be used as an effective adsorbent as well as in further studies.

Highlights

• Novel application of polypropylene and titanium dioxide nanocomposite, Nano-PP/TiO2.

• Removal of organophosphorus malathion using Nano-PP/TiO2.

• Optimizing the process conditions for adsorption of malathion from aqueous based on the response surface model

•Identifying monolayer adsorption of malathion onto Nano-PP/Tio2 surfaces

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alp H, Aytekin I, Esen H, Alp A, Buyukbas S, Basarali K, Hatipoglu NK, Kul S, et al. Protective effects of caffeic acid phenethyl ester, ellagic acid, sulforaphan and curcuma on malathion induced damage in lungs, liver and kidneys in an acute toxicity rat model. Revue Méd Vét. 2011;162(7):333–40.

    CAS  Google Scholar 

  2. Joko T, Anggoro S, Sunoko HR, Rachmawati S. Pesticides usage in the soil quality degradation potential in wanasari subdistrict, Brebes, Indonesia. Appl Environ Soil Sci. 2017;2017:5896191. https://doi.org/10.1155/2017/5896191.

    Article  CAS  Google Scholar 

  3. Aker AWG, Hu X, Wang P, Hwang HM. Comparing the relative toxicity of malathion and malaoxon in blue catfish Ictalurus furcatus. Environ Toxicol. 2008;23(4):548–54.

    Article  CAS  Google Scholar 

  4. Islam A, Malik MF. Impact of pesticides on amphibians: a review. J Anal Toxicol. 2018;1(2):3.

    Google Scholar 

  5. Zahirnia A, Boroomand M, Nasirian H, Soleimani-Asl S, Salehzadeh A, Dastan D. The cytotoxicity of malathion and essential oil of Nepeta crispa (lamiales: lamiaceae) against vertebrate and invertebrate cell lines. Pan Afr Med J. 2019;33:285.

    Article  Google Scholar 

  6. Olakkaran S, Purayil AK, Antony A, Mallikarjunaiah S, Puttaswamygowda GH. Oxidative stress-mediated genotoxicity of malathion in human lymphocytes. Mutat Res Genet Toxicol Environ Mutagen. 2020;849:503138.

    Article  CAS  Google Scholar 

  7. Badr AM. Organophosphate toxicity: updates of malathion potential toxic effects in mammals and potential treatments. Environ Sci Pollut Res. 2020;27:26036–57.

    Article  CAS  Google Scholar 

  8. Calaf GM, Bleak TC, Roy D. Signs of carcinogenicity induced by parathion, malathion, and estrogen in human breast epithelial cells. Oncol. 2021;45(4):1.

    Google Scholar 

  9. Bastos PL, Bastos AF, Gurgel AD, Gurgel IG. Carcinogenicidade e mutagenicidade do malathion e seus dois análogos: uma revisão sistemática. Cien Saude Colet. 2020;25:3273–98.

    Article  Google Scholar 

  10. Karyab H, Mahvi AH, Nazmara S, Bahojb A. Determination of water sources contamination to diazinon and malathion and spatial pollution patterns in Qazvin. Iran Arch Environ Contam Toxicol. 2013;90(1):126–31.

    Article  CAS  Google Scholar 

  11. Shakerkhatibi M, Mosaferi M, Jafarabadi MA, Lotfi E, Belvasi M. Pesticides residue in drinking groundwater resources of rural areas in the northwest of Iran. Health Promot Perspect. 2014;4(2):195.

    Google Scholar 

  12. Silva-Madera RJ, Salazar-Flores J, Peregrina-Lucano AA, Mendoza-Michel J, Ceja-Gálvez HR, Rojas-Bravo D, Reyna-Villela MZ, Torres-Sánchez ED. Pesticide Contamination in Drinking and Surface Water in the Cienega, Jalisco. Mexico Water Air Soil Pollut. 2021;232(2):1–3.

    Google Scholar 

  13. Syafrudin M, Kristanti RA, Yuniarto A, Hadibarata T, Rhee J, Al-Onazi WA, Algarni TS, Almarri AH, Al-Mohaimeed AM. Pesticides in Drinking Water—A Review. Int J Environ Res Public Health. 2021;18(2):468.

    Article  CAS  Google Scholar 

  14. Köck-Schulmeyer M, Villagrasa M, de Alda ML, Céspedes-Sánchez R, Ventura F, Barceló D. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Sci Total Environ. 2013;458:466–76.

    Article  Google Scholar 

  15. Barbieri MV. Pesticides in the environment: analysis, occurrence, impact and recommendations for their attenuation. University of Barcelona; 2021. http://hdl.handle.net/10261/268888.

  16. Gacem MA, Telli A, Khelil AO. Nanomaterials for detection, degradation, and adsorption of pesticides from water and wastewater. In: Aquananotechnology. 2021. pp. 315–36. https://doi.org/10.1016/B978-0-12-821141-0.00003-3.

  17. Dehghani MH, Niasar ZS, Mehrnia MR, Shayeghi M, Al-Ghouti MA, Heibati B, McKay G, Yetilmezsoy K. Optimizing the removal of organophosphorus pesticide malathion from water using multi-walled carbon nanotubes. Chem Eng J. 2017;310:22–32.

    Article  CAS  Google Scholar 

  18. Hosseini M, Kamani H, Esrafili A, Yegane Badi M, Gholami M. Removal of malathion by sodium alginate/biosilicate/magnetite nanocomposite as a novel adsorbent: kinetics, isotherms, and thermodynamic study. Health Scope. 2019;8(4):e88454. https://doi.org/10.5812/jhealthscope.88454.

    Article  Google Scholar 

  19. Jaiswal M, Chauhan D, Sankararamakrishnan N. Copper chitosan nanocomposite: synthesis, characterization, and application in removal of organophosphorous pesticide from agricultural runoff. Environ Sci Pollut Res. 2012;19(6):2055–62.

    Article  CAS  Google Scholar 

  20. Zhang Y, Pagilla K. Treatment of malathion pesticide wastewater with nanofiltration and photo-Fenton oxidation. Desalination. 2010;263(1-3):36–44.

    Article  CAS  Google Scholar 

  21. Kalantary RR, Azari A, Esrafili A, Yaghmaeian K, Moradi M, Sharafi K. The survey of Malathion removal using magnetic graphene oxide nanocomposite as a novel adsorbent: thermodynamics, isotherms, and kinetic study. Desalin Water Treat. 2016;57(58):28460–73.

    Article  CAS  Google Scholar 

  22. Chen L, Hosseini M, Fakhri A, Fazelian N, Nasr SM, Nobakht N. Synthesis and characterization of Cr 2 S 3-Bi 2 O 3 nanocomposites: photocatalytic, quenching, repeatability, and antibacterial performances. J Mater Sci Mater Electron. 2019;30(14):13067–75.

    Article  CAS  Google Scholar 

  23. Chaudhari S, Shaikh T, Pandey P. A review on polymer TiO2 nanocomposites. Int J Eng Res. 2013;3(5):1386–91.

    Google Scholar 

  24. Kamrannejad MM, Hasanzadeh A, Nosoudi N, Mai L, Babaluo AA. Photocatalytic degradation of polypropylene/TiO2 nano-composites. Mater Res. 2014;17(4):1039–46.

    Article  Google Scholar 

  25. Masoudifar M, Nosrati B, Mohebbi GR. Effect of surface treatment and titanium dioxide nanoparticles on the mechanical and morphological properties of wood flour/polypropylene nanocomposites. Int Wood Prod J. 2018;9(4):176–85.

    Article  Google Scholar 

  26. Karyab H, Karyab F, Haji-Mirmohammad AR. Optimization of adsorption conditions for removal of total organic carbon from drinking water using polypropylene and titanium dioxide nano-composite by response surface methodology. Desalin Water Treat. 2017;98:144–51.

    Article  CAS  Google Scholar 

  27. Szabová R, Černáková Ľ, Wolfová M, Černák M. Coating of TiO2 nanoparticles on the plasma activated polypropylene fibers. Acta Chimica Slovaca. 2009;2(1):70–6.

    Google Scholar 

  28. Saleh A, Yamini Y, Faraji M, Rezaee M, Ghambarian M. Ultrasound-assisted emulsification microextraction method based on applying low density organic solvents followed by gas chromatography analysis for the determination of polycyclic aromatic hydrocarbons in water samples. J Chromatogr A. 2009;1216(39):6673–9.

    Article  CAS  Google Scholar 

  29. Mahmoud AS, Ismail A, Mostafa MK, Mahmoud MS, Ali W, Shawky AM. Isotherm and kinetic studies for heptachlor removal from aqueous solution using Fe/Cu nanoparticles, artificial intelligence, and regression analysis. Sep Sci Technol. 2020;55(4):684–96.

    Article  CAS  Google Scholar 

  30. Hermosillo-Nevárez JJ, Bustos-Terrones V, Bustos-Terrones YA, Uriarte-Aceves PM, Rangel-Peraza JG. Feasibility study on the use of recycled polymers for malathion adsorption: Isotherms and kinetic modeling. Materials. 2020;13(8):1824.

    Article  Google Scholar 

  31. Naushad M, Alothman ZA, Khan MR. Removal of malathion from aqueous solution using De-Acidite FF-IP resin and determination by UPLC-MS/MS: equilibrium, kinetics and thermodynamics studies. Talanta. 2013;115:15–23.

    Article  CAS  Google Scholar 

  32. Singh SN. Sugarcane trash ash: A low cost adsorbent for atrazine and fipronil removal from water. Indian J Chem Technol. 2020;27(4):319–25.

    Google Scholar 

  33. Ayawei N, Ebelegi AN, Wankasi D. Modelling and interpretation of adsorption isotherms. J Chem. 2017;2017:3039817. https://doi.org/10.1155/2017/3039817.

    Article  CAS  Google Scholar 

  34. Piccin JS, Dotto GL, Pinto LA. Adsorption isotherms and thermochemical data of FD&C Red n 40 binding by chitosan. Braz J Chem Eng. 2011;28(2):295–304.

    Article  CAS  Google Scholar 

  35. El Khomri M, El Messaoudi N, Dbik A, Bentahar S, Lacherai A. Efficient adsorbent derived from Argania Spinosa for the adsorption of cationic dye: Kinetics, mechanism, isotherm and thermodynamic study. Surf Interfaces. 2020;20:100601.

    Article  Google Scholar 

  36. Behnamfard A, Salarirad MM. Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. J Hazard Mater. 2009;170(1):127–33.

    Article  CAS  Google Scholar 

  37. Villabona-Ortíz A, Tejada-Tovar CN, Ortega-Toro R. Modelling of the adsorption kinetics of chromium (VI) using waste biomaterials. Rev Mex Ing Quim. 2020;19(1):401–8.

    Article  Google Scholar 

  38. Barazandeh A, Jamali HA, Karyab H. Equilibrium and kinetic study of adsorption of diazinon from aqueous solutions by nano-polypropylene-titanium dioxide: Optimization of adsorption based on response surface methodology (RSM) and central composite design (CCD). Korean J Chem Eng. 2021;38(12):2436–45.

    Article  CAS  Google Scholar 

  39. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965–77.

    Article  CAS  Google Scholar 

  40. Doosti F, Ghanbari R, Jamali HA, Karyab H. Optimizing fenton process for olive mill wastewater treatment using response surface methodology. Fresen Environ Bull. 2017;26(10):5942–53.

    CAS  Google Scholar 

  41. Younis SA, Ghobashy MM, Samy M. Development of aminated poly (glycidyl methacrylate) nanosorbent by green gamma radiation for phenol and malathion contaminated wastewater treatment. J Environ Chem Eng. 2017;5(3):2325–36.

    Article  CAS  Google Scholar 

  42. Nasseri S, Borna MO, Esrafili A, Kalantary RR, Kakavandi B, Sillanpää M, Asadi A. Photocatalytic degradation of malathion using Zn 2+-doped TiO 2 nanoparticles: statistical analysis and optimization of operating parameters. Appl Phys A. 2018;124(2):1–1.

    Article  Google Scholar 

  43. Habila MA, Alothman ZA, Al-Tamrah SA, Ghafar AA, Soylak M. Activated carbon from waste as an efficient adsorbent for malathion for detection and removal purposes. J Ind Eng Chem. 2015;32:336–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Qazvin University of Medical Sciences for providing the technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Karyab.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, M., Mosakhani, Z., Barazandeh, A. et al. Adsorption of organophosphorus malathion pesticide from aqueous solutions using nano-polypropylene-titanium dioxide composite: Equilibrium, kinetics and Optimization studies. J Environ Health Sci Engineer 21, 35–45 (2023). https://doi.org/10.1007/s40201-022-00826-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-022-00826-x

Keywords

Navigation