Skip to main content
Log in

Investigation of fungal contamination in indoor air and on surfaces of traditional public baths in a historical city

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

It has been proven that exposure to bioaerosols is associated with several health effects, such as pulmonary diseases and allergies. The present cross-sectional study was aimed to investigate fungal contamination in indoor air and on the surfaces of four traditional baths in Shiraz, Iran, one of the most historical cities in the world. Samples were taken from indoor air, using a microbial air sampler, as well as the surfaces of the shower, hallway, and dressing rooms of studied baths for 3 months. Totally 180 samples, including 45 air and 135 surfaces samples, were collected from studied baths. The concentrations of fungi collected from the air of studied baths were ranged from 22.6 to 34.6 CFU/m3. Besides, the levels of fungi collected from the surface samples of studied baths were ranged from 21.2 to 60 CFU/m2. The highest and lowest fungi species detected both in air and surfaces samples of the studied baths were Penicillium spp. and Mucor spp. respectively. Although the levels of fungi in the studied baths were lower than the levels recommended by the World Health Organization, some environmental health measures such as washing and disinfecting surfaces and tools after each working shift and periodic inspections are recommended ensuring the safety of costumers who are visiting such places.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Neisi A, Vosoughi M, Idani E, Goudarzi G, Takdastan A, Babaei AA, et al. Comparison of normal and dusty day impacts on fractional exhaled nitric oxide and lung function in healthy children in Ahvaz, Iran. Environ Sci Pollut Res. 2017;24(13):12360–71.

    CAS  Google Scholar 

  2. Dianat M, Radmanesh E, Badavi M, Goudarzi G, Mard SA. The effects of PM 10 on electrocardiogram parameters, blood pressure and oxidative stress in healthy rats: the protective effects of vanillic acid. Environ Sci Pollut Res. 2016;23(19):19551–60.

    CAS  Google Scholar 

  3. Bernstein JA, Alexis N, Bacchus H, Bernstein IL, Fritz P, Horner E, et al. The health effects of non-industrial indoor air pollution. J Allergy Clin Immunol. 2008;121(3):585–91.

    CAS  Google Scholar 

  4. Ramos CA, Viegas C, Verde SC, Wolterbeek HT, Almeida SM. Characterizing the fungal and bacterial microflora and concentrations in fitness centres. Indoor Built Environ. 2015;25(6):872–82.

    Google Scholar 

  5. Brągoszewska E. Exposure to bacterial and fungal aerosols: microorganism indices in a waste-sorting Plant in Poland. Int J Environ Res Public Health. 2019;16(18):3308.

    Google Scholar 

  6. Medrela-Kuder E. Seasonal variations in the occurrence of culturable airborne fungi in outdoor and indoor air in Crac??w. Int Biodeterior Biodegradation. 2003;52:203–5.

    Google Scholar 

  7. Oliveira M, Ribeiro H, Abreu I. Annual variation of fungal spores in atmosphere of Porto: 2003. Ann Agric Environ Med. 2005;12(2):309–15.

    Google Scholar 

  8. Sepahvand A, Azimi F, Hashemi SY, Rashidi R, Safari M, Zeidali S. General hospitals indoor air quality in Lorestan, Iran. J Air Pollut Health. 2017;2(1).

  9. Garcia-Solache MA, Casadevall A. Global warming will bring new fungal diseases for mammals. mBio. 2010;1(1):e00061–10.

    Google Scholar 

  10. Mendell MJ, Mirer AG, Cheung K, Tong M, Douwes J. Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. Environ Health Perspect. 2011;119(6):748–56.

    CAS  Google Scholar 

  11. Bahkali P. Fungal flora in house dust in Riyadh. Saudi Arabia Mycoses. 1999;42(4):339–43.

    CAS  Google Scholar 

  12. Quansah R, Jaakkola MS, Hugg TT, Heikkinen SA, Jaakkola JJ. Residential dampness and molds and the risk of developing asthma: a systematic review and meta-analysis. PLoS One. 2012;7(11):e47526.

    CAS  Google Scholar 

  13. Fisk WJ, Lei-Gomez Q, Mendell MJ. Meta-analyses of the associations of respiratory health effects with dampness and mold in homes. Indoor Air. 2007;17(4):284–96.

    CAS  Google Scholar 

  14. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008;51(Suppl 4):2–15.

    Google Scholar 

  15. Menezes EA, Carvalho PG, Trindade ECPM, Madeira Sobrinho G, Cunha FA, Castro FFM. Airborne fungi causing respiratory allergy in patients from Fortaleza, Ceará, Brazil. Jornal Brasileiro de Patologia e Medicina Laboratorial. 2004;40(2):79–84.

    Google Scholar 

  16. Brandi G, Sisti M, Paparini A, Gianfranceschi G, Schiavano GF, De Santi M, et al. Swimming pools and fungi: an environmental epidemiology survey in Italian indoor swimming facilities. Int J Environ Health Res. 2007;17(3):197–206.

    Google Scholar 

  17. Chabasse D, Pihet M, Bouchara J-P. Émergence de nouveaux champignons pathogènes en médecine : revue générale. Revue Francophone des Laboratoires. 2009;2009(416):71–86.

    Google Scholar 

  18. Matos T, De Hoog G, De Boer A, De Crom I, Haase G. High prevalence of the neurotrope Exophiala dermatitidis and related oligotrophic black yeasts in sauna facilities. Mycoses. 2002;45(9–10):373–7.

    CAS  Google Scholar 

  19. Goksugur N, Karabay O, Kocoglu E. Mycological flora of the Hammams, traditional Turkish bath. Mycoses. 2006;49(5):411–4.

    Google Scholar 

  20. Moriyama Y, Nawata N, Tsuda T, Nitta M. Occurrence of moulds in Japanese bathrooms. Int Biodeterior Biodegradation. 1992;30(1):47–55.

    Google Scholar 

  21. Hamada N, Abe N. Physiological characteristics of 13 common fungal species in bathrooms. Mycoscience. 2009;50(6):421–9.

    Google Scholar 

  22. Cherif-Seffadj N. Medieval and ottoman Hammams of Algeria: elements for a historical study of baths architecture in North Africa. Archnet-IJAR: International Journal of Architectural Research; 2009.

  23. Ouaffak Z. Zaim, Lyagoubi, Laboratoire de Mycologie. Département de Parasitologie. Institut national d'Hygiène MAR. Flore fongique pathogene des bains maures de Rabat (Maroc).; pathogenic fungal flora in Moorish baths of Rabat (Morroco). J Mycol Med. 2003;13(1):19–23.

    Google Scholar 

  24. Bastuji-Garin S, Turki H, Mokhtar I, Nouira R, Fazaa B, Jomaa B, et al. Possible relation of Tunisian pemphigus with traditional cosmetics: a multicenter case-control study. Am J Epidemiol. 2002;155(3):249–56.

    Google Scholar 

  25. Perdelli F, Cristina M, Sartini M, Spagnolo A, Dallera M, Ottria G, et al. Fungal contamination in hospital environments. Infect Control Hosp Epidemiol. 2006;27(1):44–7.

    CAS  Google Scholar 

  26. Awad AHA, Saeed Y, Shakour AA, Abdellatif NM, Ibrahim YH, Elghanam M, et al. Indoor air fungal pollution of a historical museum, Egypt: a case study. Aerobiologia. 2020:1–13.

  27. Benammar L, Menasria T, Chergui A, Benfiala S, Ayachi A. Indoor fungal contamination of traditional public baths (Hammams). Int Biodeterior Biodegradation. 2017;117:115–22.

    Google Scholar 

  28. Rafiei A, Amirrajab N. Fungal contamination of indoor public swimming pools, Ahwaz, South-West of Iran. Iran J Public Health. 2010;39(3):124–8.

    CAS  Google Scholar 

  29. Khodaveisi S, Ghahremani E, Abdolahi P, Soori S, Moradzadeh S, Shamdi A, et al. Investigation of mycological flora in Kurdistan University of Medical Sciences bath hostels in 2011. Sci J Kurdistan Univ Med Sci. 2014;19(3):123–9.

    Google Scholar 

  30. Hoseini M, Jabbari H, Naddafi K, Nabizadeh R, Rahbar M, Yunesian M, et al. Concentration and distribution characteristics of airborne fungi in indoor and outdoor air of Tehran subway stations. Aerobiologia. 2013;29(3):355–63.

    Google Scholar 

  31. Shahsavani S, Dehghani M, Hoseini M, Fararouei M. Biological monitoring of urinary 1-hydroxypyrene by PAHs exposure among primary school students in shiraz, Iran. Int Arch Occup Environ Health. 2017;90(2):179–87.

    CAS  Google Scholar 

  32. Shahsavani S, Hoseini M, Dehghani M, Fararouei M. Characterisation and potential source identification of polycyclic aromatic hydrocarbons in atmospheric particles (PM10) from urban and suburban residential areas in shiraz. Iran Chemosphere. 2017;183:557–64.

    CAS  Google Scholar 

  33. Pastor C, Cruz G, Josefina M, Aguilar N, Arroyo O. Fungal and bacterial contamination on indoor surfaces of a Hospital in Mexico. Jundishapur J Microbiol. 2012;5.

  34. Nanbakhsh H, Diba K, Hazarti K. Study of fungal contamination of indoor public swimming pools in Uromia, Iran. Iranian J Publ Health. 2004;33:60–6560.

    Google Scholar 

  35. Naddafi K, Jabbari H, Hoseini M, Nabizade R, Rahbar M, Yunesian M. Investigation of indoor and outdoor air bacterial density in Tehran subway system. Iran. J. Environ. Health. Sci. Eng. 2011;8(4):381–6.

    Google Scholar 

  36. Azimi F, Naddafi K, Nabizadeh R, Hassanvand MS, Alimohammadi M, Afhami S, et al. Fungal air quality in hospital rooms: a case study in Tehran, Iran. J Environ Health Sci Eng. 2013;11(1):30.

    Google Scholar 

  37. Kallawicha K, Chao HJ, Kotchasatan N. Bioaerosol levels and the indoor air quality of laboratories in Bangkok metropolis. Aerobiologia. 2019;35(1):1–14.

    Google Scholar 

  38. Pitt J, Hocking A. Fungi and food spoilage. London, United Kingdom: Blackie Academic and professional; 1997.

    Google Scholar 

  39. Carmichael J, Kendrick WB, Conners I, Sigler L. Genera of hyphomycetes. Univ. Alberta Press; 1980.

  40. Samson R, Hoekstra E, Frisvad J, Filtenborg O. Introduction to food and air borne fungi. 7th ed. Utrecht, the Netherlands: Fungal Biodiversity Centre CBS; 2000. p. 389.

    Google Scholar 

  41. Ripon J. Medical mycology; chapter 5: Mycetoma. 3rd ed. New York: WB Saunders Company; 1988.

    Google Scholar 

  42. Soleimani Z, Goudarzi G, Naddafi K, Sadeghinejad B, Latifi SM, Parhizgari N, et al. Determination of culturable indoor airborne fungi during normal and dust event days in Ahvaz. Iran. Aerobiologia. 2013;29(2):279–90.

    Google Scholar 

  43. Nunes I, Mesquita N, Verde SC, Bandeira AML, Carolino MM, Portugal A, et al. Characterization of an airborne microbial community: a case study in the archive of the University of Coimbra. Portugal Int Biodeterior Biodegradation. 2013;79:36–41.

    CAS  Google Scholar 

  44. Picco AM, Rodolfi M. Airborne fungi as biocontaminants at two Milan underground stations. Int Biodeterior Biodegradation. 2000;45(1–2):43–7.

    Google Scholar 

  45. Kim K-Y, Park J-B, Jang G-Y, Kim C-N, Lee K-J. Assessment of bioaerosols in the public buildings of Korea. Indoor Built Environ. 2007;16(5):465–71.

    Google Scholar 

  46. Hamada N. Effect of materials on mold contamination in bathrooms. J Antibac Antifungal Agents (Japan). 2008.

  47. Organization WH. Indoor air quality: biological contaminants: report on a WHO meeting, Rautavaara, 29 August–2 September 1988: World Health Organization. Regional Office for Europe; 1990.

  48. Ekowati Y, Ferrero G, Kennedy MD, de Roda Husman AM, Schets FM. Potential transmission pathways of clinically relevant fungi in indoor swimming pool facilities. Int J Hyg Environ Health. 2018;221(8):1107–15.

    Google Scholar 

  49. Kim KY, Kim YS, Kim D, Kim HT. Exposure level and distribution characteristics of airborne bacteria and fungi in Seoul metropolitan subway stations. Ind Health. 2011;49(2):242–8.

    Google Scholar 

  50. Mirhoseini SH, Didehdar M, Akbari M, Moradzadeh R, Jamshidi R, Torabi S. Indoor exposure to airborne bacteria and fungi in sensitive wards of an academic pediatric hospital. Aerobiologia. 2020:1–8.

  51. Atya AK, Alyasiri MH, Altamimy R, Ethaib S. Assessment of airborne Fungi in indoor environment for biological lab rooms. J Pure Appl Microbiol. 2019;13(4):2281–6.

    Google Scholar 

  52. Leviã JT, Stanković S, Krnjaja V, Bočarov-Stančić A. Fusarium species: the occurrence and the importance in agriculture of Serbia. Zbornik Matice Srpske za Prirodne Nauke. 2009;116:33–48.

    Google Scholar 

  53. Nanbakhsh H, Diba K, Hazarti K. Study of fungal contamination of indoor public swimming pools in Uromia. Iran Environmental Health. 2004;4(4):68.

    Google Scholar 

  54. Peternel R, Culig J, Hrga I. Atmospheric concentrations of Cladosporium spp. and Alternaria spp. sporesin Zagreb (Croatia) and effects of some meteorological factors. Ann Agr Environ Med. 2004;11(2):303–7.

    Google Scholar 

  55. Cho E-M, Hong HJ, Park SH, Yoon DK, Nam Goung SJ, Lee CM. Distribution and influencing factors of airborne Bacteria in public facilities used by pollution-sensitive population: a meta-analysis. Int J Environ Res Public Health. 2019;16(9):1483.

    CAS  Google Scholar 

  56. Soleimani Z, Parhizgari N, Dehdari Rad H, Akhoond MR, Kermani M, Marzouni MB, et al. Normal and dusty days comparison of culturable indoor airborne bacteria in Ahvaz. Iran Aerobiologia. 2015;31(2):127–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hoseini.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatabaei, Z., Rafiee, A., Abbasi, A. et al. Investigation of fungal contamination in indoor air and on surfaces of traditional public baths in a historical city. J Environ Health Sci Engineer 18, 925–932 (2020). https://doi.org/10.1007/s40201-020-00516-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00516-6

Keywords

Navigation