Skip to main content

Advertisement

Log in

Association between pre-diabetes or diabetes and cognitive impairment in a community-dwelling older population: Bushehr Elderly Health (BEH) program

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

Persistent uncontrolled hyperglycemia is recognized as one of the risk factors for cognitive disorders. Accordingly, both type 1 and type 2 diabetes may predispose individuals to cognitive impairment, particularly in cases where glycemic control is insufficient. The objective of this comprehensive study is to separately assess cognitive dysfunctions in diabetic and non-diabetic older adults.

Methods

This cross-sectional study is part of phase 2 of the Bushehr elderly health program (BEHP). Cognitive function was evaluated using the Mini-cog and categorical verbal fluency tests (CFTs). Patients were classified as non-diabetics, pre-diabetics, or diabetics based on the diagnostic criteria for diabetes mellitus (DM). To compare the means of the two groups, we utilized the t-test or the Mann-Whitney test. Additionally Multivariable logistic regression models were used to determine the association between pre-diabetes or DM and cognitive impairment.

Results

Out of 1533 participants, 693 (45.2%) were identified as having cognitive impairment. The average hemoglobin A1C was higher in participants with cognitive impairment compared to those without cognitive impairment. (5.8 ± 1.6% vs. 5.5 ± 1.4%, P = 0.004). Furthermore, the mean blood glucose levels were found to be more elevated in cases of cognitive impairment (108.0 ± 47.4 mg/dL vs. 102.1 ± 0.35 mg/dL, P = 0.002). After adjusting for age, gender, body mass index (BMI), waist circumference, amount of physical activity, and smoking, the multivariable logistic regression model, declared an association between diabetes and cognitive impairment (OR = 1.48, P = 0.003). In addition, older patients, females, widows, and individuals with elevated LDL-Cs and those with high blood pressure were found to be more vulnerable to cognitive impairment.

Conclusion

The Bushehr Elderly Health Program (BEHP) study revealed that individuals affected with cognitive impairment may exhibit higher levels of HbA1c. This suggests a positive correlation between elevated HbA1c and cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pal K, Mukadam N, Petersen I, Cooper C. Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: a systematic review and meta-analysis. Soc Psychiatry Psychiatr Epidemiol. 2018;53(11):1149–60.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moran C, Callisaya ML, Srikanth V, Arvanitakis Z. Diabetes therapies for dementia. Curr Neurol Neurosci Rep. 2019;19(8):1–9.

    Article  Google Scholar 

  3. Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9(1):63–75. e62.

    Article  PubMed  Google Scholar 

  4. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 128:40–50.

  5. Wong RHX, Scholey A, Howe PRC. Assessing premorbid cognitive ability in adults with type 2 diabetes mellitus—a review with implications for future intervention studies. Curr Diabetes Rep. 2014;14(11):547.

    Article  Google Scholar 

  6. Grünblatt E, Bartl J, Riederer P. The link between iron, metabolic syndrome, and Alzheimer’s disease. J Neural Transm. 2011;118(3):371–9.

    Article  PubMed  Google Scholar 

  7. Dik MG, Jonker C, Comijs HC, Deeg DJ, Kok A, Yaffe K, Penninx BW. Contribution of metabolic syndrome components to cognition in older individuals. Diabetes Care. 2007;30(10):2655–60.

    Article  PubMed  Google Scholar 

  8. Palta P, Schneider AL, Biessels GJ, Touradji P, Hill-Briggs F. Magnitude of cognitive dysfunction in adults with type 2 diabetes: a meta-analysis of six cognitive domains and the most frequently reported neuropsychological tests within domains. J Int Neuropsychol Soc. 2014;20(3):278–91.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Monette MC, Baird A, Jackson DL. A meta-analysis of cognitive functioning in nondemented adults with type 2 diabetes mellitus. Can J Diabetes. 2014;38(6):401–8.

    Article  PubMed  Google Scholar 

  10. Rawlings AM, Sharrett AR, Schneider AL, Coresh J, Albert M, Couper D, Griswold M, Gottesman RF, Wagenknecht LE, Windham BG. Diabetes in midlife and cognitive change over 20 years: a cohort study. Ann Intern Med. 2014;161(11):785–93.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chatterjee S, Peters SA, Woodward M, Mejia Arango S, Batty GD, Beckett N, Beiser A, Borenstein AR, Crane PK, Haan M, et al. Type 2 diabetes as a risk factor for dementia in women compared with men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care. 2016;39(2):300–7.

    Article  CAS  PubMed  Google Scholar 

  12. de la Monte SM. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer's disease. Curr Alzheimer Res. 2012;9(1):35–66.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB. Diabetes mellitus and Alzheimer's disease: shared pathology and treatment? Br J Clin Pharmacol. 2011;71(3):365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ott A, Stolk RP, van Harskamp F, Pols HAP, Hofman A, Breteler MMB. Diabetes mellitus and the risk of dementia. Neurology. 1999;53(9):1937.

    Article  CAS  PubMed  Google Scholar 

  15. Shuba N, Karan. Assessment of the cognitive status in diabetes mellitus. J Clin Diagn Res. 2012;6(10):1658–62.

    Google Scholar 

  16. Luchsinger JA. Adiposity, hyperinsulinemia, diabetes and Alzheimer's disease: an epidemiological perspective. Eur J Pharmacol. 2008;585(1):119–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, Haneuse S, Craft S, Montine TJ, Kahn SE, et al. Glucose levels and risk of dementia. N Engl J Med. 2013;369(6):540–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ohara T, Doi Y, Ninomiya T, Hirakawa Y, Hata J, Iwaki T, Kanba S, Kiyohara Y. Glucose tolerance status and risk of dementia in the community: the Hisayama study. Neurology. 2011;77(12):1126–34.

    Article  CAS  PubMed  Google Scholar 

  19. Shafiee G, Ostovar A, Heshmat R, Darabi H, Sharifi F, Raeisi A, Mehrdad N, Shadman Z, Razi F, Amini MR. Bushehr elderly health (BEH) programme: study protocol and design of musculoskeletal system and cognitive function (stage II). BMJ Open. 2017;7(8):e013606.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Johnson CL, Paulose-Ram R, Ogden CL, et al. National health and nutrition examination survey: analytic guidelines, 1999-2010. Vital and Health statistics, Series 2. Data Evaluation and Methods Research. 2013;(161):1–24

  21. Klishadi R, Rabiei K, Khosravi A, Famouri F, Sadeghi M, Shirani S (2001) Assessment of physical activity of adolescents in Isfahan. Journal of Shahrekord University of Medical Sciences 3(2).

  22. Borson S, Scanlan JM, Chen P, Ganguli M. The Mini-cog as a screen for dementia: validation in a population-based sample. J Am Geriatr Soc. 2003;51(10):1451–4.

    Article  PubMed  Google Scholar 

  23. Quaranta D, Piccininni C, Caprara A, Malandrino A, Gainotti G, Marra C. Semantic relations in a categorical verbal fluency test: an exploratory investigation in mild cognitive impairment. Front Psychol. 2019;10:2797.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ika K, Suzuki E, Mitsuhashi T, Takao S, Doi H. Shift work and diabetes mellitus among male workers in Japan: does the intensity of shift work matter? Acta Med Okayama. 2013;67(1):25–33.

    PubMed  Google Scholar 

  25. Xue M, Xu W, Ou YN, Cao XP, Tan MS, Tan L, Yu JT. Diabetes mellitus and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 144 prospective studies. Ageing Res Rev. 2019;55:100944.

    Article  CAS  PubMed  Google Scholar 

  26. Gao Y, Xiao Y, Miao R, Zhao J, Cui M, Huang G, Fei M. The prevalence of mild cognitive impairment with type 2 diabetes mellitus among elderly people in China: a cross-sectional study. Arch Gerontol Geriatr. 2016;62:138–42.

    Article  PubMed  Google Scholar 

  27. Tiwari SC, Tripathi RK, Farooqi SA, Kumar R, Srivastava G, Kumar A. Diabetes mellitus: a risk factor for cognitive impairment amongst urban older adults. Ind Psychiatry J. 2012;21(1):44–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun L, Diao X, Gang X, Lv Y, Zhao X, Yang S, Gao Y, Wang G. Risk factors for cognitive impairment in patients with type 2 diabetes. J Diabetes Res. 2020;2020:4591938.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jia HH, Liu L, Huo GX, Wang RQ, Zhou YQ, Yang LY. A qualitative study of the cognitive behavioral intention of patients with diabetes in rural China who have experienced delayed diagnosis and treatment. BMC Public Health. 2020;20(1):478.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Calvo-Ochoa E, Arias C. Cellular and metabolic alterations in the hippocampus caused by insulin signalling dysfunction and its association with cognitive impairment during aging and Alzheimer's disease: studies in animal models. Diabetes Metab Res Rev. 2015;31(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  31. Heras-Sandoval D, Ferrera P, Arias C. Amyloid-β protein modulates insulin signaling in presynaptic terminals. Neurochem Res. 2012;37(9):1879–85.

    Article  CAS  PubMed  Google Scholar 

  32. Choi J, Malakowsky CA, Talent JM, Conrad CC, Gracy RW. Identification of oxidized plasma proteins in Alzheimer's disease. Biochem Biophys Res Commun. 2002;293(5):1566–70.

    Article  CAS  PubMed  Google Scholar 

  33. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA. Gene regulation and DNA damage in the ageing human brain. Nature. 2004;429(6994):883–91.

    Article  CAS  PubMed  Google Scholar 

  34. Gaspar JM, Baptista FI, Macedo MP, Ambrosio AF. Inside the diabetic brain: role of different players involved in cognitive decline. ACS Chem Neurosci. 2016;7(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  35. Wang J, Li G, Wang Z, Zhang X, Yao L, Wang F, Liu S, Yin J, Ling E-A, Wang L. High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience. 2012;202:58–68.

    Article  CAS  PubMed  Google Scholar 

  36. Sima AA. Encephalopathies: the emerging diabetic complications. Acta Diabetol. 2010;47(4):279–93.

    Article  CAS  PubMed  Google Scholar 

  37. Kuhad A, Bishnoi M, Tiwari V, Chopra K. Suppression of NF-κβ signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits. Pharmacol Biochem Behav. 2009;92(2):251–9.

    Article  CAS  PubMed  Google Scholar 

  38. Moran C, Phan TG, Chen J, Blizzard L, Beare R, Venn A, Münch G, Wood AG, Forbes J, Greenaway TM. Brain atrophy in type 2 diabetes: regional distribution and influence on cognition. Diabetes Care. 2013;36(12):4036–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moran C, Beare R, Phan TG, Bruce DG, Callisaya ML, Srikanth V. Type 2 diabetes mellitus and biomarkers of neurodegeneration. Neurology. 2015;85(13):1123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Biessels GJ, Reijmer YD. Brain changes underlying cognitive dysfunction in diabetes: what can we learn from MRI? Diabetes. 2014;63(7):2244–52.

    Article  PubMed  Google Scholar 

  41. Callisaya ML, Beare R, Moran C, Phan T, Wang W, Srikanth VK. Type 2 diabetes mellitus, brain atrophy and cognitive decline in older people: a longitudinal study. Diabetologia. 2019;62(3):448–58.

    Article  PubMed  Google Scholar 

  42. Bangen KJ, Werhane ML, Weigand AJ, Edmonds EC, Delano-Wood L, Thomas KR, Nation DA, Evangelista ND, Clark AL, Liu TT, Bondi MW. Reduced regional cerebral blood flow relates to poorer cognition in older adults with type 2 diabetes. Front Aging Neurosci. 2018;10(10):270.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sundermann EE, Thomas KR, Bangen KJ, Weigand AJ, Eppig JS, Edmonds EC, Wong CG, Bondi MW, Delano-Wood L. Prediabetes is associated with brain hypometabolism and cognitive decline in a sex-dependent manner: a longitudinal study of nondemented older adults. Front Neurol. 2021;19(12):551975.

  44. Dybjer E, Nilsson PM, Engström G, Helmer C, Nägga K. Pre-diabetes and diabetes are independently associated with adverse cognitive test results: a cross-sectional, population-based study. BMC Endocr Disord. 2018;18(1):1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahbube Ebrahimpur or Afshin Ostovar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkhani, S., Payab, M., Sharifi, F. et al. Association between pre-diabetes or diabetes and cognitive impairment in a community-dwelling older population: Bushehr Elderly Health (BEH) program. J Diabetes Metab Disord (2023). https://doi.org/10.1007/s40200-023-01325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40200-023-01325-y

Keywords

Navigation