Skip to main content

Advertisement

Log in

The impact of cichorium intybus L. On GDF-15 level in obese diabetic albino mice as compared with metformin effect

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

Diabetes mellitus (DM) and obesity comorbidity signify a frequent metabolic disorder, representing a huge public health burden. Metformin, the most used anti-diabetic medication, is found to reduce body weight via growth differentiation factor 15 (GDF-15) signalling pathways. The medicinal herb Cichorium intybus L. (chicory or cichorium) has a promising pharmacological impact on energy homeostasis. On the other hands, little data is available on its role in DM and obesity. Despite its irrefutable effect, its exact mechanism of action has not completely elucidated; the present study evaluated the effect of chicory on DM, antioxidant status, inflammation, and GDF-15 level in comparison with the metformin effect.

Material and methods

Eighty albino mice were grouped as (control, obese diabetic group, metformin-treated, and Cichorium intybus L. -treated group). The study assessed blood glucose, lipid profile, inflammatory markers (IL-6, TNF-α), total antioxidant capacity (TAC) and caspase-3. Quantitative RT-PCR assessed GDF-15 and leptin relative mRNA expression.

Results

Cichorium intybus L. has significantly lowered inflammatory, apoptotic markers, and leptin levels compared with the diseased group. Likewise, the plant upregulated GDF-15 and TAC's levels. The study documented a non-significant difference between the Cichorium intybus L. -treated and the metformin-treated groups in all estimated markers.

Conclusion

The Cichorium intybus L. is a promising herbal supplement with anti-inflammatory, antioxidant, anti-diabetic, and weight reduction effects via affecting GDF-15 signalling pathways.

Graphical abstract

GDF-15 has anti-inflammatory, anti-oxidative stress and anti-apoptotic effect in DM and obesity via targeting NF-κB mechanisms

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hruby A, Hu F. The epidemiology of obesity: a big picture. Pharmacoeconomics. 2015;33(7):673–89.

    Article  Google Scholar 

  2. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389:2239–51.

    Article  CAS  Google Scholar 

  3. Sanchez-Rangel E, Inzucchi SE. Metformin: clinical use in type 2 diabetes. Diabetologia. 2017;60(9):1586–93.

    Article  CAS  Google Scholar 

  4. Yerevanian A, Soukas AA. Metformin: mechanisms in human obesity and weight loss. Curr Obes rep. 2019;8(2):156–64.

    Article  Google Scholar 

  5. Tokubuchi I, Tajiri Y, Iwata S, Hara K, Wada N, Hashinaga T, et al. Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. PLoS One. 2017; 12(2): e0171293.

  6. Coll AP, Chen M, Taskar P, Rimmington D, Patel S, Tadross JA, et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature. 2020;578(7795):444–8.

    Article  CAS  Google Scholar 

  7. Arkoumani M, Papadopoulou-Marketou N, Nicolaides NC, Kanaka-Gantenbein C, Tentolouris N, Papassotiriou I. The clinical impact of growth differentiation factor-15 in heart disease: A 2019 update. Crit Rev Clin Lab Sci. 2020;57(2):114–25.

    Article  CAS  Google Scholar 

  8. Patel S, Alvarez-Guaita A, Melvin A, Rimmington D, Dattilo A, Miedzybrodzka EL, et al. GDF15 provides an endocrine signal of nutritional stress in mice and humans. Cell metab. 2019;29(3):707–18.

    Article  CAS  Google Scholar 

  9. Adela R, Banerjee SK. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: a translational prospective. J. Diabetes Res. 2015; 2015: 490842.

  10. Lerner L, Tao J, Liu Q, Nicoletti R, Feng B, Krieger B, et al. MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J cachexia sarcopenia muscle. 2016;7(4):467–82.

    Article  Google Scholar 

  11. Zhang Y, Moszczynski LA, Liu Q, Jiang J, Zhao D, Quan D, et al. Over-expression of growth differentiation factor 15 (GDF15) preventing cold ischemia reperfusion (I/R) injury in heart transplantation through foxo3a signaling. Oncotarget. 2017;8(22):36531–44.

    Article  Google Scholar 

  12. Folch J, Patraca I, Martínez N, Pedrós I, Petrov D, Ettcheto M, et al. The role of leptin in the sporadic form of Alzheimer's disease. Interactions with the adipokines amylin, ghrelin and the pituitary hormone prolactin. Life sci. 2015; 140:19–28.

  13. Tang Q, Gao Y, Liu Q, Yang X, Wu T, Huang C, et al. Sirt6 in pro-opiomelanocortin neurons controls energy metabolism by modulating leptin signaling. Mol metab. 2020; 37: 100994.

  14. Zhao S, Zhu Y, Schultz RD, Li N, He Z, Zhang Z, et al. Partial leptin reduction as an insulin sensitization and weight loss strategy. Cell metab. 2019;30(4):706–19.

    Article  CAS  Google Scholar 

  15. Chandra K, Jain SK. Therapeutic potential of Cichorium intybus in lifestyle disorders: A review. Asian J Pharm Clin Res. 2016;9(3):20–5.

    CAS  Google Scholar 

  16. Street RA, Sidana J, Prinsloo G. Cichorium intybus: Traditional uses, phytochemistry, pharmacology, and toxicology. Evidence-Based Complementary and Alternative Medicine. 2013; 2013.

  17. Ghamarian A, Abdollahi M, Su X, Amiri A, Ahadi A, Nowrouzi A. Effect of chicory seed extract on glucose tolerance test (GTT) and metabolic profile in early and late stage diabetic rats. Journal of Faculty of Pharmacy, Tehran University of Medical Sciences. 2012;20(1):56.

    PubMed  PubMed Central  Google Scholar 

  18. Asl ZS, Malekirad AA, Abdollahi M, Bakhshipour A, Dastjerdi HA, Mostafalou S, et al. Effects of the mixture of cichorium intybus L. and Cinnamomum zeylanicum on hepatic enzymes activity and biochemical parameters in patients with nonalcoholic fatty liver disease. Health. 2014; 2014.

  19. Pushparaj P, Low H, Manikandan J, Tan B, Tan C. Anti-diabetic effects of Cichorium intybus in streptozotocin-induced diabetic rats. J ethnopharmacol. 2007;111(2):430–4.

    Article  CAS  Google Scholar 

  20. Hassan HA, Serag HM, Abdel-Hamid NM, Amr MM. Synergistic curative effect of Cichorium intybus linn extract and cisplatin against thioacetamide-induced hepatocellular carcinoma. Hepatoma Res. 2015;1:147–54.

    Article  CAS  Google Scholar 

  21. Kim RH, Coates JM, Bowles TL, McNerney GP, Sutcliffe J, Jung JU, et al. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer res. 2009;69(2):700–8.

    Article  CAS  Google Scholar 

  22. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    Article  CAS  Google Scholar 

  23. Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V. Method for the measurement of antioxidant activity in human fluids. J clin path. 2001;54(5):356–61.

    Article  CAS  Google Scholar 

  24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.). 2001; 25(4):402–408.

  25. Oguntibeju O. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J physiol pathol pharmacol. 2019;11(3):45–63.

    CAS  Google Scholar 

  26. Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014; 2014:943162.

  27. Macia L, Tsai VW, Nguyen AD, Johnen H, Kuffner T, Shi YC et al. Macrophage inhibitory cytokine 1 (MIC-1/GDF15) decreases food intake, body weight and improves glucose tolerance in mice on normal & obesogenic diets. PLoS One. 2012; 7 (4): e34868.

  28. Chrysovergis K, Wang X, Kosak J, Lee SH, Kim JS, Foley JF, et al. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int J Obes. 2014;2014(38):1555–64.

    Article  Google Scholar 

  29. Ouyang J, Isnard S, Lin J, Fombuena B, Peng X, Chen Y, et al. GDF-15 as a Weight Watcher for Diabetic and Non-diabetic People Treated with Metformin. Frontiers in Endocrinol. 2020;11:911.

    Article  Google Scholar 

  30. Emmerson PJ, Wang F, Du Y, Liu Q, Pickard RT, Gonciarz MD, et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med. 2017;23:1215–9.

    Article  CAS  Google Scholar 

  31. Mullican SE, Lin-Schmidt X, Chin CN, Chavez JA, Furman JL, Armstrong AA, et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med. 2017;23:1150–7.

    Article  CAS  Google Scholar 

  32. Yang L, Chang CC, Sun Z, Madsen D, Zhu H, Padkjær SB, et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med. 2017;23:1158–66.

    Article  CAS  Google Scholar 

  33. Cho AS, Jeon SM, Kim MJ, Yeo J, Seo KI, Choi MS, et al. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association. 2010;48(3):937–43.

    Article  CAS  Google Scholar 

  34. Wu Y, Zhou F, Jiang H, Wang Z, Hua C, Zhang Y. (2018). Chicory (Cichorium intybus L.) polysaccharides attenuate high-fat diet induced non-alcoholic fatty liver disease via AMPK activation. Int J biol macromol. 2018; 118:886–895.

  35. Ho FM, Lin WW, Chen BC, et al. High glucose-induced apoptosis in human vascular endothelial cells is mediated through NF-kappaB and c-Jun NH2-terminal kinase pathway and prevented by PI3K/Akt/eNOS pathway. Cell Signal. 2006;18:391–9.

    Article  CAS  Google Scholar 

  36. Chandra K, Khan W, Jetley S, Ahmad S, Jain SK. Antidiabetic, toxicological, and metabolomic profiling of aqueous extract of Cichorium intybus seeds. Phcog Mag. 2018;14:377–83.

    Article  CAS  Google Scholar 

  37. Brewer M. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Comprehensive Reviews in Food Science and Food Safety. 2011;10:221–47.

    Article  CAS  Google Scholar 

  38. Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovas diabetol. 2005;4:5–5.

    Article  Google Scholar 

  39. Kailash C, Washim K, Sujata J, Sayeed A, Jain SK. Antidiabetic, Toxicological, and Metabolomic Profiling of Aqueous Extract of Cichorium intybus. Pharmacogn Mag. 2018;14:57.

    Article  Google Scholar 

  40. Patel S, Santani D. Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol rep. 2009;61(4):595–603.

    Article  CAS  Google Scholar 

  41. Moller DE. Potential role of TNF-alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab. 2000;11(6):212–7.

    Article  CAS  Google Scholar 

  42. Khan SQ, Ng K, Dhillon O, Kelly D, Quinn P, Squire IB, Davies JE, Ng LL. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction. Eur Heart J. 2009;30:1057–65.

    Article  CAS  Google Scholar 

  43. Nady M, Mansour A, Hafez E, Omran G, Hamad G, Harraz S, et al. (2016). Chicory abrogates oxidative stress, inflammation and caspase-dependent apoptosis in acute hepatic injury model induced by acetaminophen in rats. Int J Phytomed. 2016; 8(1):13–21.

  44. Pérez A, Jiménez F, García T, Margalet V. Role of Leptin in Inflammation and Vice Versa. Int J Mol Sci. 2020;21:588.

    Article  Google Scholar 

  45. Upadhyaya P, Rehan H, Seth V. Serum leptin changes with metformin treatment in polycystic overian syndrome: correlation with ovulation, insulin resistance and testosterone level. EXCLI J. 2011;10:9–15.

    PubMed  PubMed Central  Google Scholar 

  46. Ida S, Murata K, Kaneko R. Effects of metformin treatment on blood leptin and ghrelinlevels in patients with type 2 diabetes mellitus. J Diabetes. 2016;9(5):526–35.

    Article  Google Scholar 

Download references

Funding

No funding have received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira Kamel Eltokhy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eltokhy, A.K., Khattab, H.A. & Rabah, H.M. The impact of cichorium intybus L. On GDF-15 level in obese diabetic albino mice as compared with metformin effect. J Diabetes Metab Disord 20, 1119–1128 (2021). https://doi.org/10.1007/s40200-021-00828-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00828-w

Keywords

Navigation