Skip to main content

Advertisement

Log in

Mormodica charantia L. fruit and Genistein ameliorates type 2 diabetes in rats by preventing lipid accumulation, insulin resistance and enhancing beta cell function

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

The present study was aimed at evaluating the role of Momordica charantia L. fruit and Genistein on beta cell, insulin resistance/sensitivity and lipid profile in type 2 diabetic rats.

Methods

Thirty-five (35) albino rats were divided into seven (7) groups of 5 rats each comprising of five (5) non-diabetic and thirty (30) diabetic rats. Groups 1 and 2 served as the normal control and diabetic control groups respectively and received distill water, groups 3 and 4 received Mormodica charantia L. at 250 mg/kg and 500 mg/kg respectively. Groups 5 and 6 received Genistein at 10 mg/kg and 20 mg/kg respectively while group 7 received Metformin at 500 mg/kg the experiment lasted for four weeks. All the rats were euthanized at the end of the fourth week.

Results

Lipid profile, glucose and insulin levels were determined from the analysis of serum parameters and the histology of the pancreas. A significant reduction (p < 0.05) in blood glucose levels was noticed in rats that received Momordica charantia L. (MC) and genistein when compared with diabetic control rats. A significant decrease (p < 0.05) in cholesterol, triglyceride, low density lipoprotein (LDL) and very low density lipoprotein (VLDL) levels were also noted in rats that received MC and Genistein when compared with the diabetic control rats. MC and Genistein significantly increased (P < 0.05) serum insulin level compared to the diabetic control rats. MC and Genistein significantly decreased (p < 0.05) homeostatic model assessment-insulin resistance (HOMA-IR) level compared with the diabetic control group. Pancreas of rats that received MC and Genistein showed regenerating beta-cells.

Conclusion

Momordica charantia L. fruit and Genistein were able to enhance beta cell function and prevent lipid accumulation and insulin resistance in type 2 diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Position statement. Diabetes Care. 2014;37:81–90.

    Google Scholar 

  2. Boland BB, Brown JC, Boland ML, Cann J, Sulikowski M, Hansen G, et al. Pancreatic b-cell rest replenishes insulin secretory capacity and attenuates diabetes in an extreme model of obese type 2 diabetes. Diabetes. 2019;68:131–40.

    CAS  PubMed  Google Scholar 

  3. Makena W, Hamman WO, Buraimoh AA, Dibal NI, Obaje SG. Therapeutic effects of balanitoside in streptozotocin-induced diabetic rats. J Taibah Univ Med Sci. 2018;13:402–6.

    PubMed  PubMed Central  Google Scholar 

  4. Engelgau MM, Geiss LS, Saaddine JB, Boyle JP, Benjamin SM, Gregg EW, et al. The evolving diabetes burden in the United States. Ann Intern Med. 2004;140:945–50.

    PubMed  Google Scholar 

  5. Gougeon R, Pencharz PB, Sigal RJ. Effect of glycemic control on the kinetics of whole body protein metabolism in obese subjects with non-insulin-dependent diabetes mellitus during iso and hypoenergetic feeding. Am J Clin Nutr. 1997;65:861–70.

    CAS  PubMed  Google Scholar 

  6. Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and DiabetesRelated complications. Phys Ther. 2008;88:1254–64.

    PubMed  PubMed Central  Google Scholar 

  7. Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev. 2002;23:201–29.

    CAS  PubMed  Google Scholar 

  8. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106:473–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim MJ, Lim Y. Protective effect of short-term Genistein supplementation on the early stage in diabetes-induced renal damage. Mediators of Inflammation Mediators Inflamm. 2013;2013:1–14.

    Google Scholar 

  10. Leahy JL, Hirsch IB, Peterson KA, Schneider D. Targeting β-cell function early in the course of therapy for type 2 diabetes mellitus. J Clinic Endocrinol Metab. 2010;95:4206–16.

    CAS  Google Scholar 

  11. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. International diabetes federation diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clinic Pract. 2018;138:271–81.

    CAS  Google Scholar 

  12. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clinic Pract. 2019;157:107843.

    Google Scholar 

  13. Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017;389:2239–51.

    CAS  PubMed  Google Scholar 

  14. Kubola J, Siriamornpun S. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem. 2008;110:881–90.

    CAS  PubMed  Google Scholar 

  15. Xie H, Huang S, Deng H, Wu Z, Ji A. Study on chemical components of Momordica charantia. Zhong Yao Cai. 1998;21:458–9.

    CAS  PubMed  Google Scholar 

  16. Raman A, Lau C. Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomed. 1996;2:349–62.

    CAS  Google Scholar 

  17. Grover JK, Yadav SP. Pharmacological actions and potential uses of Momordica charantia: a review. J Ethnopharmacol. 2004;93:123–32.

    CAS  PubMed  Google Scholar 

  18. Lu M, Wang R, Song X, Chibbar RC, Wang X, Wu L, et al. Dietary soy isoflavones increase insulin secretion and prevent the development of diabetic cataracts in streptozotocin-induced diabetic rats. Nutr. Res. 2008;28:464–71.

    CAS  PubMed  Google Scholar 

  19. Ahmed I, Adeghate E, Sharma AK, Pallot DJ, Singh J. Effects of Momordica charantia L. fruit juice on islet morphology in the pancreas of the streptozotocin-diabetic rat. Diabetes res. Clinic Pract. 1998;40:145–51.

    CAS  Google Scholar 

  20. Wang ZQ, Zhang XH, Yu Y, Poulev A, Ribnicky D, Cefalu WT. Bioactives from bitter melon enhance insulin signaling and modulate acyl carnitine content in skeletal muscle in high-fat diet fed mice. J Nutr Biochem. 2011;22:1064–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Stephenson TJ, Setchell KDR, Kendall C, Jenkins WC, Anderson DJA, Fanti JWP. Effect of soy protein-rich diet on renal function inyoung adults with insulin-dependent diabetes mellitus. Clin Nephrol. 2005;64:1–11.

    CAS  PubMed  Google Scholar 

  22. Orgaard A, Jensen L. The effects of soy isoflavones on obesity. Exp Biol Med. 2008;233:1066–80.

    Google Scholar 

  23. Lorke D. A new approach to practical acute toxicity. Arch Toxicol. 1983;54:275–87.

    CAS  PubMed  Google Scholar 

  24. El-Kordy EA, Alshahrani AM. Effect of genistein, a natural soy isoflavone on pancreatic β-cells of streptozotocin-induced diabetic rats: histological and immunohistochemical study. J Microsc Ultrastruct. 2015;3:108–19.

    PubMed  PubMed Central  Google Scholar 

  25. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    CAS  PubMed  Google Scholar 

  26. Iliya IA, Mohammed B, Akuyam SA, Yaro JD, Bauchi ZM, Tanko M, et al. Immunohistochemical evaluation of the antidiabetic potentials of S-allyl-cysteine (garlic) and mangiferin (mango) in type 2 diabetic rat model. Sub-Saharan Afr J Med. 2016;3:25–31.

    Google Scholar 

  27. Al Nahdi MT, John A, Raza H. Elucidation of molecular mechanisms of Streptozotocin-induced oxidative stress, apoptosis, and mitochondrial dysfunction in Rin-5F pancreatic β-cells. Oxidative Med Cell Longevity. 2017;2017:1–15.

    Google Scholar 

  28. Wang Q, Jokelainen J, Auvinen J, Puukka K, Kiukaanniemi SK, Järvelin M, et al. Insulin resistance and systemic metabolic changes in oral glucose tolerance test in 5340 individuals: an interventional study. BMC Med. 2017;17:217.

    CAS  Google Scholar 

  29. Boucher J, Kleinridders A, Ronald Kahn CR. Insulin receptor signaling in Normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6:a009191.

    PubMed  PubMed Central  Google Scholar 

  30. Konsue A, Picheansoonthon C, Talubmook C. Fasting blood glucose levels and hematological values in Normal and Streptozotocin-induced diabetic rats of Mimosa pudica L. Extracts Pharmacogn J. 2017;9:315–22.

    CAS  Google Scholar 

  31. Joseph B, Jini D. Antidiabetic effects of Momordica charantia L. (bitter melon) and its medicinal potency. Asian Pac J Trop Dis. 2013;3:93–102.

    PubMed Central  Google Scholar 

  32. Nkambo W, Anyama NG, Onegi B. In vivo hypoglycemic effect of methanolic fruit extract of Momordica charantia L. Afr Health Sci. 2013;13:933–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Salehi B, Ata A, Kumar NVA, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules. 2019;9:551.

    PubMed Central  Google Scholar 

  34. Tan SP, Kha TC, Parks SE, Roach PD. Bitter melon (Mormodica charanchia L.) bioactive composition and health benefits: a review. Food Rev Inter. 2016;32:181–202.

    CAS  Google Scholar 

  35. Ummi R, Harijono ET, Edang S. Bioactive compound and nutritious characteristic of bitter melon fruit (Momordica charantia L.). RJOAS. 2018;7:308–16.

    Google Scholar 

  36. Babu PVA, Si H, Fu Z, Zhen W, Liu D. Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice. J Nutr. 2012;142:724–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu D, Zhen W, Yang Z, Carter JD, Si H, Reynolds KA. Genistein acutely stimulates insulin secretion in pancreatic beta-cells through a cAMP-dependent protein kinase pathway. Diabetes. 2006;55:165–6.

    CAS  Google Scholar 

  38. Bakhtiari A, Hajian-Tilaki K, Omidvar S, Nasiri-Amiri F. Clinical and metabolic response to soy administration in older women with metabolic syndrome: a randomized controlled trial. Diabetol Metab Syndr. 2019;11:47.

    PubMed  PubMed Central  Google Scholar 

  39. Konya J, Sathyapalan T, Kilpatrick ES, Atkin SL. The Effects of Soy Protein and Cocoa with or without Isoflavones on Glycemic Control in Type 2 Diabetes. A Double-Blind, Randomized, Placebo-Controlled Study. Front Endocrinol. 2019;10:296.

    Google Scholar 

  40. Xiao C, Dash S, Morgantini C, Hegele RA, Lewis GF. Pharmacological targeting of the Atherogenic dyslipidemia complex: the next frontier in CVD prevention beyond lowering LDL cholesterol. Diabetes. 2016;65:1767–78.

    CAS  PubMed  Google Scholar 

  41. Antwi-Baffour S, Kyeremeh R, Boateng SO, Annison L, Seidu MA. Haematological parameters and lipid profile abnormalities among patients with Type-2 diabetes mellitus in Ghana. Lipids Health Dis. 2018;17:283.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bhowmik B, Siddiquee T, Mujumder A, Afsana F, Ahmed T, Mdala IA, et al. Serum lipid profile and its association with diabetes and Prediabetes in a rural Bangladeshi population. Int J Environ Res Public Health. 2018;15:1944.

    PubMed Central  Google Scholar 

  43. Femlak M, Gluba-Brzózka A, Ciałkowska-Rysz A, Rysz J. The role and function of HDL in patients with diabetes mellitus and the related cardiovascular risk. Lipids Health Dis. 2017;16:207.

    PubMed  PubMed Central  Google Scholar 

  44. Vaisar T, Couzens E, Hwang A, Russell M, Barlow CE, DeFina LF, et al. Type 2 diabetes is associated with loss of HDL endothelium protective functions. PLoS One. 2018;13:e0192616.

    PubMed  PubMed Central  Google Scholar 

  45. Choi Y, Lee C, Lee K, Jung S, Lee B. Increased hepatic fatty acid uptake and esterification contribute to tetracycline-induced Steatosis in mice. Toxicol Sci. 2015;145:273–82.

    CAS  PubMed  Google Scholar 

  46. Temitope AG, Sheriff OL, Azeezat YF, Taofik A, Fatimah AI. Cardio-protective properties of Momordica charantia L.in albino rats. African J Sci Res. 2013;11:600–10.

    Google Scholar 

  47. Zhou L, Xiao X, Zhang Q, Zheng J, Deng M. Maternal Genistein intake mitigates the deleterious effects of high-fat diet on glucose and lipid metabolism and modulates gut microbiota in adult life of male mice. Front Physiol. 2019;10:985.

    PubMed  PubMed Central  Google Scholar 

  48. Fu Z, Gilbert ER, Pfeiffer L, Zhang Y, Fu Y, Liu D. Genistein ameliorates hyperglycemia in a mouse model of nongenetic type 2 diabetes. Appl Physiol Nutr Metab. 2012;37:480–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cerf ME. Beta cell dysfunction and insulin resistance. Front Endocrinol. 2013;4:1–12.

    Google Scholar 

  50. Soares JMD, Leal AEP, Silva JC, Almeida JR, de Oliveira HP. Influence of flavonoids on mechanism of modulation of insulin secretion. Phcog Mag. 2017;13:639–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fu Z, Zhang W, Zhen W, Lum H, Nadler J, Bassaganya-Riera J. Genistein induces pancreatic beta-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinol. 2010;151:3026–37.

    CAS  Google Scholar 

  52. Yin J, Li M, Xu L, Wang Y, Cheng H, Zhao X, et al. Insulin resistance determined by homeostasis model assessment (HOMA) and associations with metabolic syndrome among Chinese children and teenagers. Diabetol Metab Syndr. 2013;5:71.

    PubMed  PubMed Central  Google Scholar 

  53. Morimoto A, Tatsumi Y, Soyano F, Miyamatsu N, Sonoda N, Godai K, et al. Increase in homeostasis model assessment of insulin resistance (HOMA-IR) had a strong impact on the development of type 2 diabetes in Japanese individuals with impaired insulin secretion: the Saku study. PLoS One. 2014;9:e105827.

    PubMed  PubMed Central  Google Scholar 

  54. Atteritano M, Marini H, Minutoli L, Polito F, Bitto A, Altavilla D. Effects of the phytoestrogen genistein on some predictors of cardiovascular risk in osteopenic, postmenopausal women: a two-year randomized, double-blind, placebo-controlled study. J Clinic Endocrinol Metab. 2007;92:3068–75.

    CAS  Google Scholar 

  55. Ha BG, Nagaoka M, Yonezawa T, Tanabe R, Woo JT, Kato H. Regulatory mechanism for the stimulatory action of genistein on glucose uptake in vitro and in vivo. J Nutr Biochem. 2012;23:501–9.

    CAS  PubMed  Google Scholar 

  56. DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. Diabetologia. 2010;53:1270–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Singh N, Gupta M. Regeneration of beta cells in islets of Langerhans of pancreas of alloxan diabetic rats by acetone extract of Momordica charantia (Linn.) (bitter gourd) fruits. Indian J Exp Biol. 2007;45:1055–62.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: All authors; Administrative support: JOH, JAT, UEU, AII & NID; Provision of study materials: WM & NID; Collection and assembly of data: WM & NID; Data analysis and interpretation: All authors; Initial draft of manuscript: WM; Critical review of the manuscript: JOH, JAT, UEU, AII & NID; Final approval of manuscript: All authors.

Corresponding author

Correspondence to Nathan I. Dibal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication

Ethics approval

The research was approved by ABU Directorate of Academic Planning and Monitoring (Approval No: ABUCAUC/2019/22) and was conducted according to the ARRIVE Guidelines

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makena, W., Hambolu, J.O., Timbuak, J.A. et al. Mormodica charantia L. fruit and Genistein ameliorates type 2 diabetes in rats by preventing lipid accumulation, insulin resistance and enhancing beta cell function. J Diabetes Metab Disord 19, 1303–1310 (2020). https://doi.org/10.1007/s40200-020-00648-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00648-4

Keywords

Navigation