Skip to main content

Advertisement

Log in

Fruit vinegar as a promising source of natural anti-inflammatory agents: an up-to-date review

  • Review article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Objectives

Fruit vinegar is one of the most famous fruit byproducts worldwide with several unique properties. There are two types of fruit vinegar, artisanal and industrial, for consumers to choose from. This review aims to assess for the first time the phytochemistry of fruit vinegar and its anti-inflammatory effects.

Method

The present work was conducted based on a literature search that selected the relevant papers from indexed databases such as Scopus, Science Direct, MDPI, PubMed, Hindawi, and Web of Science. We used numerous terms to assure a good search in different databases, including fruit vinegar, phytochemistry, bioavailability and bioaccessibility, and anti-inflammatory effect. All articles were selected based on their relevance, quality, and problematic treatment.

Results

Literature data have shown that vinegar has a long medicinal history and has been widely used by different civilizations, due to its richness in bioactive molecules, vinegar plays an important role in the prevention and treatment of various inflammatory diseases, including atopic dermatitis, mastitis, asthma, arthritis, acute pancreatitis, and colitis. Fruit vinegar consumption benefit is highly dependent on its chemical composition, especially organic acids and antioxidants, which can act as nutraceuticals.

Conclusion

Fruit vinegar has a rich chemical composition, including organic acids that can be transformed in the digestive system into compounds that play an important role in health-promoting features such as anti-inflammatory effects throughout the control of intestinal microbiota and pro-inflammatory cytokine production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. Solieri L, Giudici P. Vinegars of the World. In: Solieri L, Giudici P, editors. Vinegars of the World. Milano: Springer Milan; 2009. p. 1–16. https://doi.org/10.1007/978-88-470-0866-3_1.

    Chapter  Google Scholar 

  2. Mazza S, Murooka T. Vinegar Through the Ages. In: Solieri L, Giudici P, editors. Vinegars of the World. Milano: Springer; 2009. p. 17–39.

    Chapter  Google Scholar 

  3. Xia T, Zhang Z, Zhao Y, Kang C, Zhang X, Tian Y, Yu J, Cao H, Wang M. The anti-diabetic activity of polyphenolsrich vinegar extract in mice via regulating gut microbiota and liver inflammation. Food Chem. 2022;393:133443.

    Article  CAS  PubMed  Google Scholar 

  4. Tripathi S, Mazumder PM. Neuroprotective efficacy of apple cider vinegar on zinc-high fat diet-induced mono amine oxidase alteration in murine model of AD. J Am Coll Nutr. 2021;41(7):658–67.

    Google Scholar 

  5. Xia T, Zhang B, Duan W, Li Y, Zhang J, Song J, et al. Hepatoprotective efficacy of Shanxi aged vinegar extract against oxidative damage in vitro and in vivo. J Funct Foods. 2019;60: 103448.

    Article  CAS  Google Scholar 

  6. Tong C, Li X, Cai C, Shi X, Li W. Hepatoprotective and lipid-lowering effect of an apple vinegar beverage with oyster polysaccharides. Научные Труды Дальрыбвтуза. 2019;47:57–64.

    Google Scholar 

  7. Erdal B, Yıkmış S, Demirok NT, Bozgeyik E, Levent O. Effects of non-thermal treatment on Gilaburu vinegar (Viburnum opulus L.): polyphenols, amino acid, antimicrobial, and anticancer properties. Biology. 2022;11: 926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ali Z, Ma H, Wali A, Ayim I, Sharif MN. Daily date vinegar consumption improves hyperlipidemia, β-carotenoid and inflammatory biomarkers in mildly hypercholesterolemic adults. J Herb Med. 2019;17–18: 100265. https://doi.org/10.1016/j.hermed.2019.100265.

    Article  Google Scholar 

  9. Naseem E, Shamim M, Khan NI. Cardioprotective effects of herbal mixture (ginger, garlic, lemon, apple cider vinegar & honey) in experimental animal models of hyperlipidemia. Int J Biol Res. 2016;4:28–33.

    Google Scholar 

  10. Hwa HS, Kwon M, Lee HY, Park YM, Shin D-Y, Choi JS, et al. Immunomodulatory effect of fermented vinegar on cyclophosphamide-induced immunosuppression model. J Food Nutr Res. 2021;9:469–76.

    Article  CAS  Google Scholar 

  11. Yim EJ, Jo SW, Kang HJ, Park SK, Yu KY, Jeong D-Y, et al. Protection against osteoporosis by Fermented Mulberry vinegar supplementation via inhibiting osteoclastic activity in ovariectomized rats and osteoclastic cells. Fermentation. 2022;8: 211. https://doi.org/10.3390/fermentation8050211.

    Article  CAS  Google Scholar 

  12. Meng H, Song J, Fan B, Li Y, Zhang J, Yu J, et al. Monascus vinegar alleviates high-fat-diet-induced inflammation in rats by regulating the NF-κB and PI3K/AKT/mTOR pathways. Food Sci Hum Wellness. 2022;11:943–53.

    Article  CAS  Google Scholar 

  13. Es-sbata I, Castro R, Durán-Guerrero E, Zouhair R, Astola A. Production of prickly pear (Opuntia ficus-indica) vinegar in submerged culture using acetobacter malorum and gluconobacter oxydans: study of volatile and polyphenolic composition. J Food Compos Anal. 2022;112: 104699.

    Article  CAS  Google Scholar 

  14. Özdemir N, Pashazadeh H, Zannou O, Koca I. Phytochemical content, and antioxidant activity, and volatile compounds associated with the aromatic property, of the vinegar produced from rosehip fruit (Rosa canina L). Lwt. 2022;154: 112716.

    Article  Google Scholar 

  15. Ousaaid D, Mechchate H, Laaroussi H, Hano C, Bakour M, El Ghouizi A, et al. Fruits vinegar: quality characteristics, phytochemistry, and functionality. Molecules. 2021;27: 222.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ali Z, Li J, Zhang Y, Naeem N, Younas S, Javeed F. Dates (Phoenix Dactylifera) and date vinegar: preventive role against various Diseases and related in vivo mechanisms. Food Rev Intl. 2022;38:480–507. https://doi.org/10.1080/87559129.2020.1735411.

    Article  CAS  Google Scholar 

  17. Mumtaz S, Ali S, Tahir HM, Kazmi SAR, Shakir HA, Mughal TA, et al. Aging and its treatment with vitamin C: a comprehensive mechanistic review. Mol Biol Rep. 2021;48:8141–53.

    Article  CAS  PubMed  Google Scholar 

  18. Maya-Cano DA, Arango-Varela S, Santa-Gonzalez GA. Phenolic compounds of blueberries (Vaccinium spp) as a protective strategy against skin cell damage induced by ROS: a review of antioxidant potential and antiproliferative capacity. Heliyon. 2021;7: e06297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ai L, Ren Y, Zhu M, Lu S, Qian Y, Chen Z, et al. Synbindin restrains proinflammatory macrophage activation against microbiota and mucosal inflammation during Colitis. Gut. 2021;70:2261–72.

    Article  CAS  PubMed  Google Scholar 

  20. Meng H, Song J, Li Y, Li X, Li X, Gou J, et al. Monascus vinegar protects against liver inflammation in high-fat-diet rat by alleviating intestinal microbiota dysbiosis and enteritis. J Funct Foods. 2022;93: 105078.

    Article  CAS  Google Scholar 

  21. Tovar CA, Lima KO, Alemán A, Montero MP, Gómez-Guillén MC. The effect of chitosan nanoparticles on the rheo-viscoelastic properties and lipid digestibility of oil/vinegar mixtures (vinaigrettes). J Funct Foods. 2022;93: 105092.

    Article  CAS  Google Scholar 

  22. ibn Al-Hajjaj M, al-Husain A. Sahih Muslim. Juz VI: Dar Al-Jail, Beirut, Tt; 2007.

  23. Coskun O. Separation techniques: Chromatography. North Clin Istanb. 2016;3:156–60. https://doi.org/10.14744/nci.2016.32757.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Budak NH, Kumbul Doguc D, Savas CM, Seydim AC, Kok Tas T, Ciris MI, et al. Effects of apple cider vinegars produced with different techniques on blood lipids in high-cholesterol-fed rats. J Agric Food Chem. 2011;59:6638–44.

    Article  CAS  PubMed  Google Scholar 

  25. Ousaaid D, Laaroussi H, Bakour M, El Ghouizi A, Mechchate H, Es-safi I, et al. New insights into Phytochemical Content and antioxidant activities of Moroccan Fruit vinegars. Chemistry Africa. 2022. https://doi.org/10.1007/s42250-022-00427-z.

    Article  Google Scholar 

  26. Chochevska M, Jančovska Seniceva E, Veličkovska SK, Naumova-Leţia G, Mirčeski V, Rocha JMF, et al. Electrochemical determination of antioxidant capacity of traditional homemade fruit vinegars produced with double spontaneous fermentation. Microorganisms. 2021;9: 1946. https://doi.org/10.3390/microorganisms9091946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Antoniewicz J, Kochman J, Jakubczyk K, Janda-Milczarek K. The influence of time and storage conditions on the antioxidant potential and total phenolic content in homemade grape vinegars. Molecules. 2021;26: 7616. https://doi.org/10.3390/molecules26247616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ousaaid D, Ghouizi AE, Laaroussi H, Bakour M, Mechchate H, Es-safi I, et al. Anti-anemic effect of antioxidant-rich apple vinegar against phenylhydrazine-induced hemolytic anemia in rats. Life. 2022;12: 239. https://doi.org/10.3390/life12020239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aykın E, Budak NH, Güzel-Seydim ZB. Bioactive components of mother vinegar. J Am Coll Nutr. 2015;34:80–9.

    Article  PubMed  Google Scholar 

  30. Ren M, Wang X, Tian C, Li X, Zhang B, Song X, et al. Characterization of organic acids and phenolic compounds of cereal vinegars and fruit vinegars in China. J Food Process Preserv. 2017;41: e12937.

    Article  Google Scholar 

  31. Budak NH, Aykin E, Seydim AC, Greene AK, Guzel-Seydim ZB. Functional properties of vinegar. J Food Sci. 2014;79:R757-764.

    Article  CAS  PubMed  Google Scholar 

  32. Luzón-Quintana LM, Castro R, Durán-Guerrero E. Biotechnological processes in fruit vinegar production. Foods. 2021;10: 945.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu Q, Tang G-Y, Zhao C-N, Gan R-Y, Li H-B. Antioxidant activities, phenolic profiles, and organic acid contents of fruit vinegars. Antioxidants. 2019;8: 78.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu Z, Wang C, Chen H, Ren X, Li W, Xu N, et al. Effect of changing the melanoidins by decoction on the release of volatiles in Zhenjiang aromatic vinegar. Food Res Int. 2022;158: 111453. https://doi.org/10.1016/j.foodres.2022.111453.

    Article  CAS  PubMed  Google Scholar 

  35. Tagliazucchi D, Verzelloni E, Conte A. Antioxidant properties of traditional balsamic vinegar and boiled must model systems. Eur Food Res Technol. 2008;227:835–43. https://doi.org/10.1007/s00217-007-0794-6.

    Article  CAS  Google Scholar 

  36. Chen J-C, Chen Q-H, Guo Q, Ruan S, Ruan H, He G-Q, et al. Simultaneous determination of acetoin and tetramethylpyrazine in traditional vinegars by HPLC method. Food Chem. 2010;122:1247–52.

    Article  CAS  Google Scholar 

  37. Wu J, Zhao H, Du M, Song L, Xu X. Dispersive liquid–liquid microextraction for rapid and inexpensive determination of tetramethylpyrazine in vinegar. Food Chem. 2019;286:141–5.

    Article  CAS  PubMed  Google Scholar 

  38. Shahidi F, Peng H. Bioaccessibility and bioavailability of phenolic compounds. J Food Bioactives. 2018;4:11–68.

    Article  Google Scholar 

  39. Angelino D, Cossu M, Marti A, Zanoletti M, Chiavaroli L, Brighenti F, et al. Bioaccessibility and bioavailability of phenolic compounds in bread: a review. Food Funct. 2017;8:2368–93.

    Article  CAS  PubMed  Google Scholar 

  40. Bakir S, Toydemir G, Boyacioglu D, Beekwilder J, Capanoglu E. Fruit antioxidants during vinegar processing: changes in content and in vitro bio-accessibility. Int J Mol Sci. 2016;17: 1658.

    Article  PubMed  PubMed Central  Google Scholar 

  41. McDougall GJ, Dobson P, Smith P, Blake A, Stewart D. Assessing potential bioavailability of Raspberry anthocyanins using an in vitro digestion system. J Agric Food Chem. 2005;53:5896–904. https://doi.org/10.1021/jf050131p.

    Article  CAS  PubMed  Google Scholar 

  42. Toydemir G, Boyacioglu D, Capanoglu E, van der Meer IM, Tomassen MMM, Hall RD, et al. Investigating the transport dynamics of anthocyanins from unprocessed fruit and processed fruit juice from sour cherry (Prunus cerasus L.) across intestinal epithelial cells. J Agric Food Chem. 2013;61:11434–41. https://doi.org/10.1021/jf4032519.

    Article  CAS  PubMed  Google Scholar 

  43. Gonthier M-P, Verny M-A, Besson C, Rémésy C, Scalbert A. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr. 2003;133:1853–9.

    Article  CAS  PubMed  Google Scholar 

  44. Kishida K, Matsumoto H. Urinary excretion rate and bioavailability of chlorogenic acid, caffeic acid, p-coumaric acid, and ferulic acid in non-fasted rats maintained under physiological conditions. Heliyon. 2019;5: e02708.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Quirós-Sauceda AE, Palafox-Carlos H, Sáyago-Ayerdi SG, Ayala-Zavala JF, Bello-Perez LA, Alvarez-Parrilla E, et al. Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion. Food Funct. 2014;5:1063–72.

    Article  PubMed  Google Scholar 

  46. Grgić J, Šelo G, Planinić M, Tišma M, Bucić-Kojić A. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants. 2020;9: 923.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Carbonell-Capella JM, Buniowska M, Barba FJ, Esteve MJ, Frígola A. Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: a review. Compr Rev Food Sci Food Saf. 2014;13:155–71.

    Article  CAS  PubMed  Google Scholar 

  48. Zhao Y-S, Eweys AS, Zhang J-Y, Zhu Y, Bai J, Darwesh OM, et al. Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants. 2021;10: 2004. https://doi.org/10.3390/antiox10122004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thilakarathna SH, Rupasinghe HPV. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients. 2013;5:3367–87. https://doi.org/10.3390/nu5093367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nie J, Li Y, Xing J, Chao J, Qin X, Li Z. Comparison of two types of vinegar with different aging times by NMR-based metabolomic approach. J Food Biochem. 2019;43: e12835.

    Article  PubMed  Google Scholar 

  51. Al-Dalali S, Zheng F, Sun B, Chen F. Comparison of aroma profiles of traditional and modern Zhenjiang aromatic vinegars and their changes during the vinegar aging by SPME-GC-MS and GC-O. Food Anal Methods. 2019;12:544–57.

    Article  Google Scholar 

  52. Yagnik D, Ward M, Shah AJ. Antibacterial apple cider vinegar eradicates methicillin resistant Staphylococcus aureus and resistant Escherichia coli. Sci Rep. 2021;11:1–7.

    Article  Google Scholar 

  53. Wakuda T, Azuma K, Saimoto H, Ifuku S, Morimoto M, Arifuku I, et al. Protective effects of galacturonic acid-rich vinegar brewed from Japanese pear in a dextran sodium sulfate-induced acute Colitis model. J Funct Foods. 2013;5:516–23.

    Article  CAS  Google Scholar 

  54. Ousaaid D, Laaroussi H, Bakour M, El Ghouizi A, Aboulghazi A, Lyoussi B, El Arabi I. Beneficial effects of apple vinegar on hyperglycemia and hyperlipidemia in hypercaloric-fed rats. J Diabetes Res. 2020;2020:1–7.

    Article  Google Scholar 

  55. Beh BK, Mohamad NE, Yeap SK, Ky H, Boo SY, Chua JYH, et al. Anti-obesity and anti-inflammatory effects of synthetic acetic acid vinegar and Nipa vinegar on high-fat-diet-induced obese mice. Sci Rep. 2017;7:1–9.

    Article  CAS  Google Scholar 

  56. Choi J-H, Park S-E, Yeo S-H, Kim S. Anti-inflammatory and cytotoxicity effects of Cudrania tricuspidata fruits vinegar in a co-culture system with RAW264. 7 macrophages and 3T3-L1 adipocytes. Foods. 2020;9: 1232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu L, He S, Yin P, Li D, Mei C, Yu X, et al. Punicalagin induces Nrf2 translocation and HO-1 expression via PI3K/Akt, protecting rat intestinal epithelial cells from oxidative stress. Int J Hyperth. 2016;32:465–73.

    Article  CAS  Google Scholar 

  58. Lischka J, Schanzer A, Hojreh A, Ba-Ssalamah A, de Gier C, Valent I, et al. Circulating microRNAs 34a, 122, and 192 are linked to obesity-associated inflammation and metabolic Disease in pediatric patients. Int J Obes. 2021;45:1763–72.

    Article  CAS  Google Scholar 

  59. Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligné B, et al. Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol. 2017;44:94–102.

    Article  CAS  PubMed  Google Scholar 

  60. Tamang JP, Shin D-H, Jung S-J, Chae S-W. Functional properties of microorganisms in fermented foods. Front Microbiol. 2016;7:578.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hashimoto M, Obara K, Ozono M, Furuyashiki M, Ikeda T, Suda Y, et al. Separation and characterization of the immunostimulatory components in unpolished rice black vinegar (kurozu). J Biosci Bioeng. 2013;116:688–96.

    Article  CAS  PubMed  Google Scholar 

  62. Han K, Bose S, Wang J, Kim B-S, Kim MJ, Kim E-J, et al. Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women. Mol Nutr Food Res. 2015;59:1004–8.

    Article  CAS  PubMed  Google Scholar 

  63. Voreades N, Kozil A, Weir TL. Diet and the development of the human intestinal microbiome. Front Microbiol. 2014;5:5.

    Article  Google Scholar 

  64. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci. 2013;110:9066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sengun IY, Kilic G, Ozturk B. Screening physicochemical, microbiological and bioactive properties of fruit vinegars produced from various raw materials. Food Sci Biotechnol. 2020;29:401–8.

    Article  CAS  PubMed  Google Scholar 

  66. Xia T, Zhang B, Duan W, Zhang J, Wang M. Nutrients and bioactive components from vinegar: a fermented and functional food. J Funct Foods. 2020;64: 103681. https://doi.org/10.1016/j.jff.2019.103681.

    Article  CAS  Google Scholar 

  67. Dibner JJ, Buttin P. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J Appl Poult Res. 2002;11:453–63.

    Article  CAS  Google Scholar 

  68. Zare R, Abedian Kenari A, Yazdani Sadati M. Influence of dietary acetic acid, protexin (probiotic), and their combination on growth performance, intestinal microbiota, digestive enzymes, immunological parameters, and fatty acids composition in Siberian sturgeon (Acipenser baerii, Brandt, 1869). Aquacult Int. 2021;29:891–910. https://doi.org/10.1007/s10499-021-00652-2.

    Article  CAS  Google Scholar 

  69. Dai D, Qiu K, Zhang H, Wu S, Han Y, Wu Y, Qi G, Wang J. Organic acids as alternatives for antibiotic growth promoters alter the intestinal structure and microbiota and improve the growth performance in Broilers. Fron Microbiol. 2021;11:1–14.

    Google Scholar 

  70. Jiang D, Kang A, Yao W, Lou J, Zhang Q, Bao B, et al. Euphorbia kansui fry-baked with vinegar modulates gut microbiota and reduces intestinal toxicity in rats. J Ethnopharmacol. 2018;226:26–35. https://doi.org/10.1016/j.jep.2018.07.029.

    Article  CAS  PubMed  Google Scholar 

  71. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, De Los Reyes-gavilán CG, Salazar N. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol. 2016;7:185.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and Colorectal cancer. Nat Rev Microbiol. 2014;12:661–72.

    Article  CAS  PubMed  Google Scholar 

  73. Donohoe DR, Holley D, Collins LB, Montgomery SA, Whitmore AC, Hillhouse A, et al. A Gnotobiotic Mouse Model demonstrates that dietary Fiber protects against colorectal tumorigenesis in a microbiota-and butyrate-dependent MannerFiber–Microbiota–butyrate Axis in Tumor suppression. Cancer Discov. 2014;4:1387–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, et al. Short-chain fatty acids protect against high-fat diet–induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes. 2015;64:2398–408.

    Article  Google Scholar 

  75. Jung T-H, Park JH, Jeon W-M, Han K-S. Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway. Nutr Res Pract. 2015;9:343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ho C-L, Lin C-Y, Ka S-M, Chen A, Tasi Y-L, Liu M-L, et al. Bamboo vinegar decreases inflammatory mediator expression and NLRP3 inflammasome activation by inhibiting reactive oxygen species generation and protein kinase C-α/δ activation. PLoS ONE. 2013;8: e75738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xia T, Zhang J, Yao J, Zhang B, Duan W, Zhao C, et al. Shanxi aged vinegar protects against alcohol-induced liver injury via activating Nrf2-mediated antioxidant and inhibiting TLR4-induced inflammatory response. Nutrients. 2018;10: 805.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lee CS, Yi EH, Kim H-R, Huh S-R, Sung S-H, Chung M-H, et al. Anti-dermatitis effects of oak wood vinegar on the DNCB-induced contact hypersensitivity via STAT3 suppression. J Ethnopharmacol. 2011;135:747–53.

    Article  CAS  PubMed  Google Scholar 

  79. Dizon MP, Yu AM, Singh RK, Wan J, Chren M-M, Flohr C, et al. Systematic review of atopic dermatitis Disease definition in studies using routinely collected health data. Br J Dermatol. 2018;178:1280–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bath-Hextall FJ, Birnie AJ, Ravenscroft JC, Williams HC. Interventions to reduce Staphylococcus aureus in the management of atopic eczema: an updated Cochrane review. Br J Dermatol. 2010;163:12–26.

    Article  CAS  PubMed  Google Scholar 

  81. Rippke F, Schreiner V, Doering T, Maibach HI. Stratum corneum pH in atopic dermatitis. Am J Clin Dermatol. 2004;5:217–23.

    Article  PubMed  Google Scholar 

  82. Proksch E. pH in nature, humans and skin. J Dermatol. 2018;45:1044–52.

    Article  CAS  PubMed  Google Scholar 

  83. Luu LA, Flowers RH, Kellams AL, Zeichner S, Preston DC, Zlotoff BJ, et al. Apple cider vinegar soaks [0.5%] as a treatment for atopic dermatitis do not improve skin barrier integrity. Pediatr Dermatol. 2019;36:634–9.

    Article  PubMed  Google Scholar 

  84. Lim NR, Treister AD, Tesic V, Lee KC, Lio PA. A split body trial comparing dilute bleach vs. dilute apple cider vinegar compresses for atopic dermatitis in Chicago: a pilot study. J Dermatol Cosmetol. 2019;3:22–4.

    Article  Google Scholar 

  85. Chopra R, Vakharia PP, Sacotte R, Silverberg JI. Efficacy of bleach baths in reducing severity of atopic dermatitis: a systematic review and meta-analysis. Ann Allergy Asthma Immunol. 2017;119:435–40. https://doi.org/10.1016/j.anai.2017.08.289.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wong S, Ng TG, Baba R. Efficacy and safety of sodium hypochlorite (bleach) baths in patients with moderate to severe atopic dermatitis in Malaysia. J Dermatol. 2013;40:874–80. https://doi.org/10.1111/1346-8138.12265.

    Article  CAS  PubMed  Google Scholar 

  87. Sawada Y, Tong Y, Barangi M, Hata T, Williams MR, Nakatsuji T, et al. Dilute bleach baths used for treatment of atopic dermatitis are not antimicrobial in vitro. J Allergy Clin Immunol. 2019;143:1946–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Eriksson S, Van der Plas MJA, Mörgelin M, Sonesson A. Antibacterial and antibiofilm effects of sodium hypochlorite against Staphylococcus aureus isolates derived from patients with atopic dermatitis. Br J Dermatol. 2017;177:513–21.

    Article  CAS  PubMed  Google Scholar 

  89. Ousaaid D, Laaroussi H, Bakour M, Ennaji H, Lyoussi B, El Arabi I. Antifungal and antibacterial activities of apple vinegar of different cultivars. Int J Microbiol. 2021;2021:1–6.

    Article  Google Scholar 

  90. Luu LA, Flowers RH, Gao Y, Wu M, Gasperino S, Kellams AL, et al. Apple cider vinegar soaks do not alter the skin bacterial microbiome in atopic dermatitis. PLoS ONE. 2021;16: e0252272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lee NR, Lee H-J, Yoon NY, Kim D, Jung M, Choi EH. Application of topical acids improves atopic dermatitis in murine model by enhancement of skin barrier functions regardless of the origin of acids. Ann Dermatol. 2016;28:690–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pangprasit N, Srithanasuwan A, Suriyasathaporn W, Pikulkaew S, Bernard JK, Chaisri W. Antibacterial activities of acetic acid against major and minor pathogens isolated from mastitis in dairy cows. Pathogens. 2020;9: 961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Güler O, Polat R, Karaköse M, Çakılcıoğlu U, Akbulut S. An ethnoveterinary study on plants used for the treatment of livestock Diseases in the province of Giresun (Turkey). South Afr J Bot. 2021;142:53–62.

    Article  Google Scholar 

  94. Ousaaid D, Imtara H, Laaroussi H, Lyoussi B, El Arabi I. An investigation of Moroccan vinegars: Their physicochemical properties and antioxidant and antibacterial activities. J Food Qual. 2021;2021:1–8.

    Article  Google Scholar 

  95. Ikechukwu N, Oriki-Udezuka A. Antibacterial effect of vinegar produced from Garcina Kola and Artocarpus heterophyllus. Asian J Microbiol Biotechnol. 2021;12(2):48–60.

    Google Scholar 

  96. El-Sayed TS, Nour El-Deen MM, Rokaya ME, Sherif MM. Evaluation of the antibacterial effect of apple vinegar as a root canal irrigant using endovac irrigation system. Al-Azhar Dent J Girls. 2019;6:53–9.

    Article  Google Scholar 

  97. Hindi NK. In vitro antibacterial activity of aquatic garlic extract, apple vinegar and apple vinegar-garlic extract combination. Am J Phytomedicine Clin Ther. 2013;1:42–51.

    Google Scholar 

  98. Entani E, Asai M, Tsujihata S, Tsukamoto Y, Ohta M. Antibacterial action of vinegar against food-borne pathogenic bacteria including Escherichia coli O157: H7. J Food Prot. 1998;61:953–9.

    Article  CAS  PubMed  Google Scholar 

  99. Hammad H, Lambrecht BN. The basic immunology of Asthma. Cell. 2021;184:1469–85. https://doi.org/10.1016/j.cell.2021.02.016.

    Article  CAS  PubMed  Google Scholar 

  100. Agertoft L, Pedersen S. Effects of long-term treatment with an inhaled corticosteroid on growth and pulmonary function in asthmatic children. Respir Med. 1994;88:373–81.

    Article  CAS  PubMed  Google Scholar 

  101. Amaral-Machado L, Oliveira WN, Moreira-Oliveira SS, Pereira DT, Alencar EN, Tsapis N, Egito ES. Use of natural products in asthma treatment. Evi-Based Complement Altern Med. 2020;2020:1–35.

    Article  Google Scholar 

  102. Dębińska A, Sozańska B. Fermented food in asthma and respiratory allergies—chance or failure? Nutrients. 2022;14: 1420.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bouazza A, Bitam A, Amiali M, Bounihi A, Yargui L, Koceir EA. Effect of fruit vinegars on liver damage and oxidative stress in high-fat-fed rats. Pharm Biol. 2016;54:260–5.

    Article  CAS  PubMed  Google Scholar 

  104. Ross CM, Poluhowich JJ. The effect of apple cider vinegar on adjuvant arthritic rats. Nutr Res. 1984;4:737–41.

    Article  Google Scholar 

  105. Shizuma T, Ishiwata K, Nagano M, Mori H, Fukuyama N. Protective effects of Kurozu and Kurozu Moromimatsu on dextran sulfate sodium-induced experimental Colitis. Dig Dis Sci. 2011;56:1387–92.

    Article  PubMed  Google Scholar 

  106. Bussmann RW, Glenn A. Fighting pain: traditional Peruvian remedies for the treatment of asthma, rheumatism, arthritis and sore bones. IJTK. 2011;10(3):2011.

    Google Scholar 

  107. Nejatbakhsh F, Karegar-Borzi H, Amin G, Eslaminejad A, Hosseini M, Bozorgi M, et al. Squill Oxymel, a traditional formulation from Drimia maritima (L.) Stearn, as an add-on treatment in patients with moderate to severe persistent Asthma: a pilot, triple-blind, randomized clinical trial. J Ethnopharmacol. 2017;196:186–92.

    Article  PubMed  Google Scholar 

  108. Prado CM, Martinis MA, Tibério IS. Nitric oxide in asthma physiopathology. Int Sch Res Notices. 2011;2011:1–13.

    Google Scholar 

  109. Sanders M. Inhalation therapy: an historical review. Prim Care Respir J. 2007;16:71–81. https://doi.org/10.3132/pcrj.2007.00017.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kim H, Jung H-M, Kim S, Seo U-K. Effect of wood vinegar produced from Morus alba on HyperSecretion of Airway MUCUS. J Intern Korean Med. 2010;31:650–66.

    Google Scholar 

  111. García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, et al. Nutritional components in Western diet versus mediterranean diet at the gut microbiota–immune system interplay. Implications for health and disease. Nutrients. 2021;13: 699.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lv H, Li Z, Xie Z, Hu X, Li H, Sun J, et al. Innovated formulation of TCM pangolin scales to develop a nova therapy of rheumatoid arthritis. Biomed Pharmacother. 2020;126: 109872. https://doi.org/10.1016/j.biopha.2020.109872.

    Article  CAS  PubMed  Google Scholar 

  113. Lee PJ, Papachristou GI. New insights into acute Pancreatitis. Nat Rev Gastroenterol Hepatol. 2019;16:479–96. https://doi.org/10.1038/s41575-019-0158-2.

    Article  CAS  PubMed  Google Scholar 

  114. Huang W, Booth DM, Cane MC, Chvanov M, Javed MA, Elliott VL, et al. Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute Pancreatitis. Gut. 2014;63:1313–24. https://doi.org/10.1136/gutjnl-2012-304058.

    Article  CAS  PubMed  Google Scholar 

  115. Trumbeckaite S, Kuliaviene I, Deduchovas O, Kincius M, Baniene R, Virketyte S, et al. Experimental acute Pancreatitis induces mitochondrial dysfunction in rat pancreas, kidney and lungs but not in liver. Pancreatology. 2013;13:216–24. https://doi.org/10.1016/j.pan.2013.04.003.

    Article  CAS  PubMed  Google Scholar 

  116. Shen F, Feng J, Wang X, Qi Z, Shi X, An Y, et al. Vinegar treatment prevents the development of murine experimental Colitis via inhibition of inflammation and apoptosis. J Agric Food Chem. 2016;64:1111–21.

    Article  CAS  PubMed  Google Scholar 

  117. He H, Wang L, Qiao Y, Zhou Q, Yang B, Yin L, He M. Vinegar/Tetramethylpyrazine induces Nutritional Preconditioning protecting the myocardium mediated by VDAC1. Oxid Med Cell Longev. 2021;2021:1–17.

    CAS  Google Scholar 

  118. Chen L, Chen Y, Yun H, Jianli Z. Tetramethylpyrazine (TMP) protects rats against acute Pancreatitis through NF-κB pathway. Bioengineered. 2019;10:172–81. https://doi.org/10.1080/21655979.2019.1613103.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chen J, Chen J, Wang X, Wang C, Cao W, Zhao Y, et al. Ligustrazine alleviates acute Pancreatitis by accelerating acinar cell apoptosis at early phase via the suppression of p38 and Erk MAPK pathways. Biomed Pharmacother. 2016;82:1–7. https://doi.org/10.1016/j.biopha.2016.04.048.

    Article  CAS  PubMed  Google Scholar 

  120. Shizuma T. Anti-colitis effects of brown rice reported by experimental studies. J Rice Res. 2014;2:2.

    Article  Google Scholar 

  121. Urtasun R, Díaz-Gómez J, Araña M, Pajares MJ, Oneca M, Torre P, et al. A combination of apple vinegar drink with Bacillus coagulans ameliorates high fat diet-induced body weight gain, insulin resistance and hepatic steatosis. Nutrients. 2020;12: 2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Thompson-Chagoyán OC, Maldonado J, Gil A. Aetiology of inflammatory bowel Disease (IBD): role of intestinal microbiota and gut-associated lymphoid tissue immune response. Clin Nutr. 2005;24:339–52.

    Article  PubMed  Google Scholar 

  123. Rezaie A, Parker RD, Abdollahi M. Oxidative stress and pathogenesis of inflammatory bowel Disease: an epiphenomenon or the cause? Dig Dis Sci. 2007;52:2015–21.

    Article  PubMed  Google Scholar 

Download references

Funding

No funding received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and writing original draft-review: Driss OUSAAID; writing, review, and editing: Meryem BAKOUR, Hassan LAAROUSSI, Asmae EL GHOUIZI; supervision: Badiaa LYOUSI and Ilham EL ARABI.

Corresponding author

Correspondence to Driss Ousaaid.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(RDF 422 KB)

ESM 2

(PPTX 39.7 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ousaaid, D., Bakour, M., Laaroussi, H. et al. Fruit vinegar as a promising source of natural anti-inflammatory agents: an up-to-date review. DARU J Pharm Sci (2023). https://doi.org/10.1007/s40199-023-00493-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40199-023-00493-9

Keywords

Navigation