Skip to main content

Advertisement

Log in

Multi-functionalized nanocarriers targeting bacterial reservoirs to overcome challenges of multi drug-resistance

  • Review article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Introduction

Infectious diseases associated with intracellular bacteria such as Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis are important public health concern. Emergence of multi and extensively drug-resistant bacterial strains have made it even more obstinate to offset such infections. Bacteria residing within intracellular compartments provide additional barriers to effective treatment.

Method

Information provided in this review has been collected by accessing various electronic databases including Google scholar, Web of science, Scopus, and Nature index. Search was performed using keywords nanoparticles, intracellular targeting, multidrug resistance, Staphylococcus aureus; Salmonella typhimurium; Mycobacterium tuberculosis. Information gathered was categorized into three major sections as ‘Intracellular targeting of Staphylococcus aureus, Intracellular targeting of Salmonella typhimurium and Intracellular targeting of Mycobacterium tuberculosis’ using variety of nanocarrier systems.

Results

Conventional management for infectious diseases typically comprises of long-term treatment with a combination of antibiotics, which may lead to side effects and decreased patient compliance. A wide range of multi-functionalized nanocarrier systems have been studied for delivery of drugs within cellular compartments where bacteria including Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis reside. Such carrier systems along with targeted delivery have been utilized for sustained and controlled delivery of drugs. These strategies have been found useful in overcoming the drawbacks of conventional treatments including multi-drug resistance.

Conclusion

Development of multi-functional nanocargoes encapsulating antibiotics that are proficient in targeting and releasing drug into infected reservoirs seems to be a promising strategy to circumvent the challenge of multidrug resistance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no eskape! An update from the infectious diseases society of America. Clin Infect Dis. 2009;48(1):1–12.

    PubMed  Google Scholar 

  2. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, et al. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the infectious diseases society of America. Clin Infect Dis. 2008;46(2):155–64. https://doi.org/10.1086/524891.

    Article  PubMed  Google Scholar 

  3. Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem. 2009;78:119–46. https://doi.org/10.1146/annurev.biochem.78.082907.145923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van Duin D, Paterson D. Multidrug resistant bacteria in the community: trends and lessons learned. Infect Dis Clin N Am. 2016;30(2):377–90. https://doi.org/10.1016/j.idc.2016.02.004.

    Article  Google Scholar 

  5. Ozerek AE, Rao GG. Multi-drug resistant bacteria. Postgraduate Doctor - Caribb. 2000;16(1 Suppl):1–4.

    Google Scholar 

  6. Ishida O, Maruyama K, Tanahashi H, Iwatsuru M, Sasaki K, Eriguchi M, et al. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm Res. 2001;18(7):1042–8.

    CAS  PubMed  Google Scholar 

  7. Singh R, Smitha MS, Singh S. The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol. 2014;14(7):4745–56. https://doi.org/10.1166/jnn.2014.9527.

    Article  CAS  PubMed  Google Scholar 

  8. Montanari E, Di Meo C, Oates A, Coviello T, Matricardi P. Pursuing intracellular pathogens with hyaluronan. From a ‘pro-infection’ polymer to a biomaterial for ‘trojan horse’ systems. Molecules. 2018;23(4):939.

    PubMed Central  Google Scholar 

  9. Wei C, Wei W, Morris M, Kondo E, Gorbounov M, Tomalia DA. Nanomedicine and drug delivery. Med Clin. 2007;91(5):863–70. https://doi.org/10.1016/j.mcna.2007.05.005.

    Article  CAS  Google Scholar 

  10. Alving CR. Macrophages as targets for delivery of liposome-encapsulated antimicrobial agents. Adv Drug Deliv Rev. 1988;2(1):107–28. https://doi.org/10.1016/0169-409X(88)90007-5.

    Article  Google Scholar 

  11. Maya S, Indulekha S, Sukhithasri V, Smitha KT, Nair SV, Jayakumar R, et al. Efficacy of tetracycline encapsulated o-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus. Int J Biol Macromol. 2012;51(4):392–9. https://doi.org/10.1016/j.ijbiomac.2012.06.009.

    Article  CAS  PubMed  Google Scholar 

  12. Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, et al. Novel antibody–antibiotic conjugate eliminates intracellular S aureus. Nature. 2015;527:323–8. https://doi.org/10.1038/nature16057.

    Article  CAS  PubMed  Google Scholar 

  13. Wileman T, Harding C, Stahl P. Receptor-mediated endocytosis. Biochem J. 1985;232(1):1–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ye J, Liu E, Yu Z, Pei X, Chen S, Zhang P, et al. CPP-assisted intracellular drug delivery, what is next? Int J Mol Sci. 2016;17(11):1892.

    PubMed Central  Google Scholar 

  15. Pinto-Alphandary H, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents. 2000;13(3):155–68.

    CAS  PubMed  Google Scholar 

  16. Bosnjakovic A, Mishra MK, Ren W, Kurtoglu YE, Shi T, Fan D, et al. Poly (amidoamine) dendrimer-erythromycin conjugates for drug delivery to macrophages involved in periprosthetic inflammation. Nanomed Nanotechnol Biol Med. 2011;7(3):284–94.

    CAS  Google Scholar 

  17. Armstead AL, Li B. Nanomedicine as an emerging approach against intracellular pathogens. Int J Nanomedicine. 2011;6:3281–93. https://doi.org/10.2147/IJN.S27285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hiramatsu K, Katayama Y, Matsuo M, Sasaki T, Morimoto Y, Sekiguchi A, et al. Multi-drug-resistant Staphylococcus aureus and future chemotherapy. J Infect Chemother. 2014;20(10):593–601. https://doi.org/10.1016/j.jiac.2014.08.001.

    Article  CAS  PubMed  Google Scholar 

  19. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12(4):564–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. García-Álvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, et al. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis. 2011;11(8):595–603.

    PubMed  PubMed Central  Google Scholar 

  21. Thomer L, Schneewind O, Missiakas D. Pathogenesis of Staphylococcus aureus bloodstream infections. Annu Rev Pathol. 2016;11:343–64. https://doi.org/10.1146/annurev-pathol-012615-044351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Proctor RA, Mosher DF, Olbrantz PJ. Fibronectin binding to Staphylococcus aureus. J Biol Chem. 1982;257(24):14788–94.

    CAS  PubMed  Google Scholar 

  23. Lopes J, Dos Reis M, Brentani R. Presence of laminin receptors in Staphylococcus aureus. Science. 1985;229(4710):275–7.

    CAS  PubMed  Google Scholar 

  24. Mandell GL, Vest TK. Killing of intraleukocytie Staphylococcus aureus by rifampin: In-vitro and in-vivo studies. J Infect Dis. 1972;125(5):486–90. https://doi.org/10.1093/infdis/125.5.486.

    Article  CAS  PubMed  Google Scholar 

  25. Thwaites GE, Gant V. Are bloodstream leukocytes trojan horses for the metastasis of Staphylococcus aureus? Nat Rev Microbiol. 2011;9(3):215–22.

    CAS  PubMed  Google Scholar 

  26. Anwar S, Prince L, Foster S, Whyte M, Sabroe I. The rise and rise of Staphylococcus aureus: laughing in the face of granulocytes. Clin Exp Immunol. 2009;157(2):216–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rollin G, Tan X, Tros F, Dupuis M, Nassif X, Charbit A, et al. Intracellular survival of Staphylococcus aureus in endothelial cells: a matter of growth or persistence. Front Microbiol. 2017;8:1354. https://doi.org/10.3389/fmicb.2017.01354.

    Article  PubMed  PubMed Central  Google Scholar 

  28. McGonigle JE, Purves J, Rolff J. Intracellular survival of Staphylococcus aureus during persistent infection in the insect Tenebrio molitor. Dev Comp Immunol. 2016;59:34–8. https://doi.org/10.1016/j.dci.2016.01.002.

    Article  CAS  PubMed  Google Scholar 

  29. Rogers DE, Tompsett R. The survival of staphylococci within human leukocytes. J Exp Med. 1952;95(2):209–30. https://doi.org/10.1084/jem.95.2.209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guggenbichler J, Bonatti H, Rottensteiner F. Resistance of intracellular killing of staphylococci by macrophages as new pathophysiologic concept of acute hematogenous osteomyelitis in children and therapeutic consequences. New aspects for treatment with fosfomycin. Springer; 1987. p. 73–88.

  31. Abu-Humaidan AH, Elvén M, Sonesson A, Garred P, Sørensen OE. Persistent intracellular Staphylococcus aureus in keratinocytes lead to activation of the complement system with subsequent reduction in the intracellular bacterial load. Front Immunol. 2018;9(396). https://doi.org/10.3389/fimmu.2018.00396.

  32. Moriwaki M, Iwamoto K, Niitsu Y, Matsushima A, Yanase Y, Hisatsune J, et al. Staphylococcus aureus from atopic dermatitis skin accumulates in the lysosomes of keratinocytes with induction of IL-1alpha secretion via TLR9. Allergy. 2019;74(3):560–71. https://doi.org/10.1111/all.13622.

    Article  CAS  PubMed  Google Scholar 

  33. Lacoma A, Cano V, Moranta D, Regueiro V, Dominguez-Villanueva D, Laabei M, et al. Investigating intracellular persistence of Staphylococcus aureus within a murine alveolar macrophage cell line. Virulence. 2017;8(8):1761–75. https://doi.org/10.1080/21505594.2017.1361089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fraunholz M, Sinha B. Intracellular Staphylococcus aureus: live-in and let die. Front Cell Infect Microbiol. 2012;2:43. https://doi.org/10.3389/fcimb.2012.00043.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhou K, Li C, Chen D, Pan Y, Tao Y, Qu W, et al. A review on nanosystems as an effective approach against infections of Staphylococcus aureus. Int J Nanomedicine. 2018;13:7333–47. https://doi.org/10.2147/IJN.S169935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Labruère R, Sona AJ, Turos E. Anti–methicillin-resistant Staphylococcus aureus nanoantibiotics. Front Pharmacol. 2019;10(1121). https://doi.org/10.3389/fphar.2019.01121.

  37. Hibbitts A, O'Leary C. Emerging nanomedicine therapies to counter the rise of methicillin-resistant Staphylococcus aureus. Materials (Basel). 2018;11(2):321. https://doi.org/10.3390/ma11020321.

    Article  CAS  Google Scholar 

  38. Water JJ, Smart S, Franzyk H, Foged C, Nielsen HM. Nanoparticle-mediated delivery of the antimicrobial peptide plectasin against Staphylococcus aureus in infected epithelial cells. Eur J Pharm Biopharm. 2015;92:65–73. https://doi.org/10.1016/j.ejpb.2015.02.009.

    Article  CAS  PubMed  Google Scholar 

  39. Smitha KT, Nisha N, Maya S, Biswas R, Jayakumar R. Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes. Int J Biol Macromol. 2015;74:36–43. https://doi.org/10.1016/j.ijbiomac.2014.11.006.

    Article  CAS  PubMed  Google Scholar 

  40. Montanari E, Oates A, Di Meo C, Meade J, Cerrone R, Francioso A, et al. Hyaluronan-based nanohydrogels for targeting intracellular S. aureus in human keratinocytes. Adv Healthc Mater. 2018;7(12):e1701483. https://doi.org/10.1002/adhm.201701483.

    Article  CAS  PubMed  Google Scholar 

  41. Semiramoth N, Meo CD, Zouhiri F, Said-Hassane F, Valetti S, Gorges R, et al. Self-assembled squalenoylated penicillin bioconjugates: an original approach for the treatment of intracellular infections. ACS Nano. 2012;6(5):3820–31.

    CAS  PubMed  Google Scholar 

  42. Qiu Y, Hou Y, Sun F, Chen P, Wang D, Mu H, et al. Hyaluronic acid conjugation facilitates clearance of intracellular bacterial infections by streptomycin with neglectable nephrotoxicity. Glycobiology. 2017;27(9):861–7. https://doi.org/10.1093/glycob/cwx061.

    Article  CAS  PubMed  Google Scholar 

  43. Mu H, Tang J, Liu Q, Sun C, Wang T, Duan J. Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Sci Rep. 2016;6:18877. https://doi.org/10.1038/srep18877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alving CR, Steck EA, Chapman WL, Waits VB, Hendricks LD, Swartz GM, et al. Therapy of leishmaniasis: superior efficacies of liposome-encapsulated drugs. Proc Natl Acad Sci USA. 1978;75(6):2959–63. https://doi.org/10.1073/pnas.75.6.2959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pumerantz A, Muppidi K, Agnihotri S, Guerra C, Venketaraman V, Wang J, et al. Preparation of liposomal vancomycin and intracellular killing of meticillin-resistant Staphylococcus aureus (MRSA). Int J Antimicrob Agents. 2011;37(2):140–4. https://doi.org/10.1016/j.ijantimicag.2010.10.011.

    Article  CAS  PubMed  Google Scholar 

  46. Onyeji C, Nightingale C, Marangos M. Enhanced killing of methicillin-resistant Staphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin. Infection. 1994;22(5):338–42.

    CAS  PubMed  Google Scholar 

  47. Bonventre PF, Gregoriadis G. Killing of intraphagocytic Staphylococcus aureus by dihydrostreptomycin entrapped within liposomes. Antimicrob Agents Chemother. 1978;13(6):1049–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fountain MW, Dees C, Schultz RD. Enhanced intracellular killing of Staphylococcus aureus by canine monocytes treated with liposomes containing amikacin, gentamicin, kanamycin, and tobramycin. Curr Microbiol. 1981;6(6):373–6.

    CAS  Google Scholar 

  49. Barman M, Unold D, Shifley K, Amir E, Hung K, Bos N, et al. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect Immun. 2008;76(3):907–15.

    CAS  PubMed  Google Scholar 

  50. Gart EV, Suchodolski JS, Welsh TH, Alaniz RC, Randel RD, Lawhon SD. Salmonella typhimurium and multidirectional communication in the gut. Front Microbiol. 2016;7:1827. https://doi.org/10.3389/fmicb.2016.01827.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wray C, Wray A. Salmonella in domestic animals. Wallingford: CABI Publishing; 2000.

    Google Scholar 

  52. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, Gordon MA, et al. Epidemic multiple drug resistant Salmonella typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res. 2009;19(12):2279–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fàbrega A, Vila J. Salmonella enterica serovar typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev. 2013;26(2):308–41. https://doi.org/10.1128/CMR.00066-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Iel-Soo B. G. FJ, Michael M, Jyoti V, C. FF. Alternative sigma factor interactions in Salmonella: σE and σH promote antioxidant defences by enhancing σS levels. Mol Microbiol. 2005;56(3):811–23. https://doi.org/10.1111/j.1365-2958.2005.04580.x.

    Article  CAS  Google Scholar 

  55. Richter-Dahlfors A, Buchan AMJ, Finlay BB. Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med. 1997;186(4):569–80. https://doi.org/10.1084/jem.186.4.569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Richardson AR, Soliven KC, Castor ME, Barnes PD, Libby SJ, Fang FC. The base excision repair system of Salmonella enterica serovar Typhimurium counteracts DNA damage by host nitric oxide. PLoS Pathog. 2009;5(5):e1000451.

    PubMed  PubMed Central  Google Scholar 

  57. Bakker-Woudenberg IAJM. Delivery of antimicrobials to infected tissue macrophages. Adv Drug Deliv Rev. 1995;17(1):5–20. https://doi.org/10.1016/0169-409X(95)00037-8.

    Article  CAS  Google Scholar 

  58. Jajere SM. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet World. 2019;12(4):504–21. https://doi.org/10.14202/vetworld.2019.504-521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ibarra JA, Steele-Mortimer O. Salmonella – the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol. 2009;11(11):1579–86. https://doi.org/10.1111/j.1462-5822.2009.01368.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ranjan A, Pothayee N, Seleem MN, Boyle SM, Kasimanickam R, Riffle JS, et al. Nanomedicine for intracellular therapy. FEMS Microbiol Lett. 2012;332(1):1–9. https://doi.org/10.1111/j.1574-6968.2012.02566.x.

    Article  CAS  PubMed  Google Scholar 

  61. Zaki NM, Hafez MM. Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular Salmonella typhimurium. AAPS PharmSciTech. 2012;13(2):411–21. https://doi.org/10.1208/s12249-012-9758-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Balland O, Pinto-Alphandary H, Viron A, Puvion E, Andremont A, Couvreur P. Intracellular distribution of ampicillin in murine macrophages infected with Salmonella typhimurium and treated with (3H) ampicillin-loaded nanoparticles. J Antimicrob Chemother. 1996;37(1):105–15.

    CAS  PubMed  Google Scholar 

  63. Pinto-Alphandary H, Balland O, Laurent M, Andremont A, Puisieux F, Couvreur P. Intracellular visualization of ampicillin-loaded nanoparticles in peritoneal macrophages infected in vitro with Salmonella typhimurium. Pharm Res. 1994;11(1):38–46. https://doi.org/10.1023/a:1018985308984.

    Article  CAS  PubMed  Google Scholar 

  64. Fattal E, Youssef M, Couvreur P, Andremont A. Treatment of experimental salmonellosis in mice with ampicillin-bound nanoparticles. Antimicrob Agents Chemother. 1989;33(9):1540–3. https://doi.org/10.1128/aac.33.9.1540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mudakavi RJ, Vanamali S, Chakravortty D, Raichur AM. Development of arginine based nanocarriers for targeting and treatment of intracellular Salmonella. RSC Adv. 2017;7(12):7022–32.

    CAS  Google Scholar 

  66. S E, T.R N, V.K R, Baranwal G, Biswas R, R J et al. Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids Surf B Biointerfaces. 2017;160:40–7. https://doi.org/10.1016/j.colsurfb.2017.09.003.

  67. Xie S, Yang F, Tao Y, Chen D, Qu W, Huang L, et al. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella. Sci Rep. 2017;7:41104. https://doi.org/10.1038/srep41104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Desiderio JV, Campbell SG. Intraphagocytic killing of Salmonella typhimurium by liposome-encapsulated cephalothin. J Infect Dis. 1983;148(3):563–70. https://doi.org/10.1093/infdis/148.3.563.

    Article  CAS  PubMed  Google Scholar 

  69. Lutwyche P, Cordeiro C, Wiseman DJ, St-Louis M, Uh M, Hope MJ, et al. Intracellular delivery and antibacterial activity of gentamicin encapsulated in pH-sensitive liposomes. Antimicrob Agents Chemother. 1998;42(10):2511–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cordeiro C, Wiseman DJ, Lutwyche P, Uh M, Evans JC, Finlay BB, et al. Antibacterial efficacy of gentamicin encapsulated in pH-sensitive liposomes against an in vivo Salmonella enterica serovar typhimurium intracellular infection model. Antimicrob Agents Chemother. 2000;44(3):533–9. https://doi.org/10.1128/aac.44.3.533-539.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yeom JH, Lee B, Kim D, Lee JK, Kim S, Bae J, et al. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar typhimurium. Biomaterials. 2016;104:43–51. https://doi.org/10.1016/j.biomaterials.2016.07.009.

    Article  CAS  PubMed  Google Scholar 

  72. Lee B, Lee DG. Synergistic antibacterial activity of gold nanoparticles caused by apoptosis-like death. J Appl Microbiol. 2019;127(3):701–12. https://doi.org/10.1111/jam.14357.

    Article  CAS  PubMed  Google Scholar 

  73. Smith I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev. 2003;16(3):463–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. S. ML, Rajni. Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. The FEBS journal. 2010;277(11):2416–27. https://doi.org/10.1111/j.1742-4658.2010.07666.x.

  75. Schlesinger L. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol. 1993;150(7):2920–30.

    CAS  PubMed  Google Scholar 

  76. Malik ZA, Iyer SS, Kusner DJ. Mycobacterium tuberculosis phagosomes exhibit altered calmodulin-dependent signal transduction: contribution to inhibition of phagosome-lysosome fusion and intracellular survival in human macrophages. J Immunol. 2001;166(5):3392–401.

    CAS  PubMed  Google Scholar 

  77. Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science. 1994;263(5147):678–81.

    CAS  PubMed  Google Scholar 

  78. Martins M, Viveiros M, Couto I, Amaral L. Targeting human macrophages for enhanced killing of intracellular XDR-TB and MDR-TB. Int J Tuberc Lung Dis. 2009;13(5):569–73.

    CAS  PubMed  Google Scholar 

  79. Clemens DL, Lee B-Y, Horwitz MA. Deviant expression of Rab5 on phagosomes containing the intracellular pathogens Mycobacterium tuberculosis and Legionella pneumophila is associated with altered phagosomal fate. Infect Immun. 2000;68(5):2671–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Scheindlin S. The fight against tuberculosis. Mol Interv. 2006;6(3):124–30.

    CAS  PubMed  Google Scholar 

  81. Kiran D, Podell BK, Chambers M, Basaraba RJ, editors. Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. Seminars in immunopathology; 2016: Springer.

  82. Donnellan S, Giardiello M. Nanomedicines towards targeting intracellular Mtb for the treatment of tuberculosis. J Interdisciplin Nanomed. 2019;4(3):76–85. https://doi.org/10.1002/jin2.61.

    Article  Google Scholar 

  83. Nasiruddin M, Neyaz M, Das S. Nanotechnology-based approach in tuberculosis treatment. Tuberculosis Res Treat. 2017;2017.

  84. Telenti A, Imboden P, Marchesi F, Matter L, Schopfer K, Bodmer T, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993;341(8846):647–51. https://doi.org/10.1016/0140-6736(93)90417-F.

    Article  CAS  PubMed  Google Scholar 

  85. Pearson ML, Jereb JA, Frieden TR, Crawford JT, Davis BJ, Dooley SW, et al. Nosocomial transmission of multidrug-resistant Mycobacterium tuberculosis: a risk to patients and health care workers. Ann Intern Med. 1992;117(3):191–6.

    CAS  PubMed  Google Scholar 

  86. Jassal M, Bishai WR. Extensively drug-resistant tuberculosis. Lancet Infect Dis. 2009;9(1):19–30. https://doi.org/10.1016/S1473-3099(08)70260-3.

    Article  PubMed  Google Scholar 

  87. Rattan A, Kalia A, Ahmad N. Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerg Infect Dis. 1998;4(2):195–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee W, VanderVen BC, Fahey RJ, Russell DG. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem. 2013;288(10):6788–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Eldholm V, Monteserin J, Rieux A, Lopez B, Sobkowiak B, Ritacco V, et al. Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat Commun. 2015;6:7119. https://doi.org/10.1038/ncomms8119.

    Article  CAS  PubMed  Google Scholar 

  90. Kiran D, Podell BK, Chambers M, Basaraba RJ. Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. Semin Immunopathol. 2016;38:167–83. https://doi.org/10.1007/s00281-015-0537-x.

    Article  CAS  PubMed  Google Scholar 

  91. Clemens DL, Lee B-Y, Xue M, Thomas CR, Meng H, Ferris D, et al. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother. 2012;56(5):2535–45. https://doi.org/10.1128/aac.06049-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Anisimova YV, Gelperina SI, Peloquin CA, Heifets LB. Nanoparticles as antituberculosis drugs carriers: effect on activity against Mycobacterium tuberculosis in human monocyte-derived macrophages. J Nanopart Res. 2000;2(2):165–71. https://doi.org/10.1023/a:1010061013365.

    Article  CAS  Google Scholar 

  93. Kisich KO, Gelperina S, Higgins MP, Wilson S, Shipulo E, Oganesyan E, et al. Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int J Pharm. 2007;345(1):154–62. https://doi.org/10.1016/j.ijpharm.2007.05.062.

    Article  CAS  PubMed  Google Scholar 

  94. de Faria TJ, Roman M, de Souza NM, De Vecchi R, de Assis JV, dos Santos ALG, et al. An isoniazid analogue promotes Mycobacterium tuberculosis-nanoparticle interactions and enhances bacterial killing by macrophages. Antimicrob Agents Chemother. 2012;56(5):2259–67. https://doi.org/10.1128/aac.05993-11.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sharma A, Vaghasiya K, Gupta P, Gupta UD, Verma RK. Reclaiming hijacked phagosomes: hybrid nano-in-micro encapsulated MIAP peptide ensures host directed therapy by specifically augmenting phagosome-maturation and apoptosis in TB infected macrophage cells. Int J Pharm. 2018;536(1):50–62. https://doi.org/10.1016/j.ijpharm.2017.11.046.

    Article  CAS  PubMed  Google Scholar 

  96. Moretton MA, Chiappetta DA, Andrade F, Das Neves J, Ferreira D, Sarmento B, et al. Hydrolyzed galactomannan-modified nanoparticles and flower-like polymeric micelles for the active targeting of rifampicin to macrophages. J Biomed Nanotechnol. 2013;9(6):1076–87.

    CAS  PubMed  Google Scholar 

  97. Horváti K, Bacsa B, Kiss É, Gyulai G, Fodor K, Balka G, et al. Nanoparticle encapsulated lipopeptide conjugate of antitubercular drug isoniazid: in vitro intracellular activity and in vivo efficacy in a Guinea pig model of tuberculosis. Bioconjug Chem. 2014;25(12):2260–8. https://doi.org/10.1021/bc500476x.

    Article  CAS  PubMed  Google Scholar 

  98. Lemmer Y, Kalombo L, Pietersen RD, Jones AT, Semete-Makokotlela B, Van Wyngaardt S, et al. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis. J Control Release. 2015;211:94–104. https://doi.org/10.1016/j.jconrel.2015.06.005.

    Article  CAS  PubMed  Google Scholar 

  99. Edagwa BJ, Guo D, Puligujja P, Chen H, McMillan J, Liu X, et al. Long-acting antituberculous therapeutic nanoparticles target macrophage endosomes. FEBS J. 2014;28(12):5071–82.

    CAS  Google Scholar 

  100. Saraog GK, Sharma B, Joshi B, Gupta P, Gupta UD, Jain NK, et al. Mannosylated gelatin nanoparticles bearing isoniazid for effective management of tuberculosis. J Drug Target. 2010;19(3):219–27.

    Google Scholar 

  101. Choi SR, Britigan BE, Moran DM, Narayanasamy P. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages. PLoS One. 2017;12(5):e0177987.

    PubMed  PubMed Central  Google Scholar 

  102. S-r C, Britigan BE, Narayanasamy P. Treatment of virulent Mycobacterium tuberculosis and HIV coinfected macrophages with gallium nanoparticles inhibits pathogen growth and modulates macrophage cytokine production. mSphere. 2019;4(4):e00443–19. https://doi.org/10.1128/mSphere.00443-19.

    Article  Google Scholar 

  103. Tenland E, Pochert A, Krishnan N, Umashankar Rao K, Kalsum S, Braun K, et al. Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS One. 2019;14(2):e0212858. https://doi.org/10.1371/journal.pone.0212858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Abdelghany S, Parumasivam T, Pang A, Roediger B, Tang P, Jahn K, et al. Alginate modified-PLGA nanoparticles entrapping amikacin and moxifloxacin as a novel host-directed therapy for multidrug-resistant tuberculosis. J Drug Deliv Sci Technol. 2019;52:642–51. https://doi.org/10.1016/j.jddst.2019.05.025.

    Article  CAS  Google Scholar 

  105. Sharma R, Raghav R, Priyanka K, Rishi P, Sharma S, Srivastava S, et al. Exploiting chitosan and gold nanoparticles for antimycobacterial activity of in silico identified antimicrobial motif of human neutrophil peptide-1. Sci Rep. 2019;9(1):7866. https://doi.org/10.1038/s41598-019-44256-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cotta KB, Padwal P, Agarwal S, Bandyopadhyaya R, Mehra S. Targeting wild-type and drug-resistant Mycobacteria in infected macrophages using drug-coated nanoparticles. J Chem Technol Biotechnol. 2019;94(3):768–76. https://doi.org/10.1002/jctb.5822.

    Article  CAS  Google Scholar 

  107. Grotz E, Tateosian NL, Salgueiro J, Bernabeu E, Gonzalez L, Manca ML, et al. Pulmonary delivery of rifampicin-loaded soluplus micelles against Mycobacterium tuberculosis. J Drug Deliv Sci Technol. 2019;53:101170. https://doi.org/10.1016/j.jddst.2019.101170.

    Article  CAS  Google Scholar 

  108. Machelart A, Salzano G, Li X, Demars A, Debrie A-S, Menendez-Miranda M, et al. Intrinsic antibacterial activity of nanoparticles made of β-cyclodextrins potentiates their effect as drug nanocarriers against tuberculosis. ACS Nano. 2019;13(4):3992–4007. https://doi.org/10.1021/acsnano.8b07902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rossi I, Buttini F, Sonvico F, Affaticati F, Martinelli F, Annunziato G, et al. Sodium hyaluronate nanocomposite respirable microparticles to tackle antibiotic resistance with potential application in treatment of mycobacterial pulmonary infections. Pharmaceutics. 2019;11(5):203.

    CAS  PubMed Central  Google Scholar 

  110. Tripodo G, Perteghella S, Grisoli P, Trapani A, Torre ML, Mandracchia D. Drug delivery of rifampicin by natural micelles based on inulin: physicochemical properties, antibacterial activity and human macrophages uptake. Eur J Pharm Biopharm. 2019;136:250–8. https://doi.org/10.1016/j.ejpb.2019.01.022.

    Article  CAS  PubMed  Google Scholar 

  111. Scolari IR, Páez PL, Sánchez-Borzone ME, Granero GE. Promising chitosan-coated alginate-tween 80 nanoparticles as rifampicin coadministered ascorbic acid delivery carrier against Mycobacterium tuberculosis. AAPS PharmSciTech. 2019;20(2):67. https://doi.org/10.1208/s12249-018-1278-7.

    Article  CAS  PubMed  Google Scholar 

  112. Vyas SP, Kannan ME, Jain S, Mishra V, Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm. 2004;269(1):37–49. https://doi.org/10.1016/j.ijpharm.2003.08.017.

    Article  CAS  PubMed  Google Scholar 

  113. Chono S, Tanino T, Seki T, Morimoto K. Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J Control Release. 2008;127(1):50–8. https://doi.org/10.1016/j.jconrel.2007.12.011.

    Article  CAS  PubMed  Google Scholar 

  114. Khademi F, Yousefi-Avarvand A, Derakhshan M, Abbaspour MR, Sadri K, Tafaghodi M. Formulation and optimization of a new cationic lipid-modified PLGA nanoparticle as delivery system for Mycobacterium tuberculosis hspx/esxs fusion protein: an experimental design. Iran J Pharm Res. 2019;18(1):446–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence. 2018;9(1):28–63. https://doi.org/10.1080/21505594.2017.1371897.

    Article  PubMed  Google Scholar 

  116. Brohi RD, Wang L, Talpur HS, Wu D, Khan FA, Bhattarai D et al. Toxicity of nanoparticles on the reproductive system in animal models: A review. Front Pharmacol. 2017;8(606). doi:https://doi.org/10.3389/fphar.2017.00606.

  117. Ho DN, Sun S. The gap between cell and animal models: nanoparticle drug-delivery development and characterization using microtissue models. Ther Deliv. 2012;3(8):915–7.

    CAS  PubMed  Google Scholar 

  118. Arora G, Misra R, Sajid A. Model systems for pulmonary infectious diseases: paradigms of anthrax and tuberculosis. Curr Top Med Chem. 2017;17(18):2077–99. https://doi.org/10.2174/1568026617666170130111324.

    Article  CAS  PubMed  Google Scholar 

  119. Han Goo K, Jiyoung J, In-Hong C. Immunotoxicity of metal oxide and metal nanoparticles and animal models to evaluate immunotoxicity of nanoparticles. Curr Biotechnol. 2016;2(2):84–90. https://doi.org/10.2174/2213529402666160601112729.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Maria Hassan Kiani and Muhammad Imran contributed in research and data acquisition. Abida Raza revised the manuscript. Basic concept and idea were conceived by Gul Shahnaz.

Corresponding author

Correspondence to Gul Shahnaz.

Ethics declarations

Study does not include research on animal or human participants for clinical trials. Article has not been submitted to any other journal. Authors have studied COPE guidelines and tried their best to conform to ethical standards requested by journal.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, M.H., Imran, M., Raza, A. et al. Multi-functionalized nanocarriers targeting bacterial reservoirs to overcome challenges of multi drug-resistance. DARU J Pharm Sci 28, 319–332 (2020). https://doi.org/10.1007/s40199-020-00337-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-020-00337-w

Keywords

Navigation