Skip to main content
Log in

Controlling Carbide Evolution to Improve the Ductility in High Specific Young’s Modulus Steels

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

A high specific Young’s modulus steel could be achieved by introducing a large fraction of kappa-carbides (κ-carbide), and its ductility was improved by efficiency divorced eutectoid transformation (DET) treatment. For this steel, carbon and aluminum contents affect not only the carbide fraction, but also the type and morphology of carbides, and consequently the mechanical properties. In this work, the alloy was designed by considering both the carbide morphology and Young’s modulus, and the carbides in the high specific Young’s modulus steels were adjusted by controlling carbon content in a suitable range for achieving a good combination of strength and ductility. The detailed microstructure evolution process during DET reaction was studied, and it was found that a higher austenitizing temperature and the cooling rate lower than 300 ℃ h−1 are suitable. The blocky carbides could be avoided by designing the carbon content in a limited content range. The microstructure-property relationship of the experimental steels was also discussed for giving an impetus to the future development of high specific Young’s modulus steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Chen, R. Rana, A. Haldar, R.K. Ray, Prog. Mater. Sci. 89, 345 (2017)

    Article  CAS  Google Scholar 

  2. F.D.R. Bonnet, V. Daeschler, G. Petitgand, Can. Metall. Quart. 53, 243 (2014)

    Article  CAS  Google Scholar 

  3. H. Springer, R. Aparicio Fernandez, M.J. Duarte, A. Kostka, D. Raabe, Acta Mater. 96, 47 (2015)

  4. P. Chen, J. Fu, X. Xu, C. Lin, J.C. Pang, X.W. Li, R.D.K. Misra, G.D. Wang, H.L. Yi, J. Mater. Sci. Technol. 87, 54 (2021)

    Article  CAS  Google Scholar 

  5. J.H. Whiteley, J. Iron Steel Inst. 105, 339 (1922)

    Google Scholar 

  6. T. Oyama, O.D. Sherby, J. Wadsworth, B. Walser, Scr. Metall. 18, 799 (1984)

    Article  CAS  Google Scholar 

  7. E.M. Taleff, C.K. Syn, D.R. Lesuer, O.D. Sherby, Metall. Mater. Trans. A 27, 111 (1996)

    Article  Google Scholar 

  8. C.K. Syn, D.R. Lesuer, O.D. Sherby, Metall. Mater. Trans. A 25, 1481 (1994)

    Article  Google Scholar 

  9. D. Connetable, P. Maugis, Intermetallics 16, 345 (2008)

    Article  CAS  Google Scholar 

  10. M. Palm, G. Inden, Intermetallics 3, 443 (1995)

    Article  CAS  Google Scholar 

  11. D. Connetable, J. Lacaze, P. Maugis, B. Sundman, Calphad 32, 361 (2008)

    Article  CAS  Google Scholar 

  12. K. Chin, H. Lee, J. Kwak, J. Kang, B. Lee, J. Alloys Compd. 505, 217 (2010)

    Article  CAS  Google Scholar 

  13. P. Chen, X.W. Li, H.L. Yi, Metals 10, 1021 (2020)

    Article  CAS  Google Scholar 

  14. N. Jiyoung, K. Hanchul, J. Korean Phys. Soc. 58, 285 (2011)

    Article  Google Scholar 

  15. J. Lee, N.J. Kim, J.Y. Jung, E.S. Lee, S. Ahn, Scr. Mater. 39, 1063 (1998)

    Article  CAS  Google Scholar 

  16. R. Rana, C. Liu, Can. Metall. Quart. 53, 300 (2014)

    Article  CAS  Google Scholar 

  17. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Article  CAS  Google Scholar 

  18. V.A. Andryushchenko, V.G. Gavrilyuk, V.M. Nadutov, Phys. Met. Metallogr. 60, 50 (1985)

    Google Scholar 

  19. J. Yang, P. La, W. Liu, Y. Hao, Mater. Sci. Eng. A 382, 8 (2004)

    Article  Google Scholar 

  20. L.J. Huetter, H.H. Stadelmaier, Acta Metall. 6, 367 (1958)

    Article  CAS  Google Scholar 

  21. W.K. Choo, K.H. Han, Metall. Mater. Trans. A 16, 5 (1985)

    Article  Google Scholar 

  22. Engineering toolbox, (2003), Young's Modulus, tensile and yield strength for common materials. https://www.engineeringtoolbox.com/young-modulus-d_417.html. Accessed 20 Sep 2020

  23. P. Chen, X.C. Xiong, G.D. Wang, H.L. Yi, Scr. Mater. 124, 42 (2016)

    Article  CAS  Google Scholar 

  24. D. Bergner, Y. Khaddour, Defect Diffus. Forum 95–98, 709 (1993)

    Google Scholar 

  25. J.C. Pang, W.F. Yang, G.D. Wang, S.J. Zheng, R.D.K. Misra, H.L. Yi, Scr. Mater. 209, 114395 (2022)

  26. B. Mintz, W.D. Gunawardana, H. Su, Mater. Sci. Technol. 24, 596 (2008)

    Article  CAS  Google Scholar 

  27. K. Wallin, T. Saario, K. Törrönen, Int. J. Fract. 32, 201 (1986)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51804072 and 52171108), the Fundamental Research Funds for the Central Universities (No. N2007012), the 111 Project (No. B16009) and the Liaoning Revitalization Talents Program (No. xlyc1907128).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowu Li or Hongliang Yi.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Xu, X., Lin, C. et al. Controlling Carbide Evolution to Improve the Ductility in High Specific Young’s Modulus Steels. Acta Metall. Sin. (Engl. Lett.) 35, 1703–1711 (2022). https://doi.org/10.1007/s40195-022-01390-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-022-01390-x

Keywords

Navigation