Skip to main content
Log in

Correlation Between Crystal Rotation and Redundant Shear Strain in Rolled Single Crystals: A Crystal Plasticity FE Analysis

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The correlation between crystal rotation and redundant shear strain in rolled single crystals was investigated by using the crystal plasticity finite element (CPFE) model in this paper. The deformation in aluminium single crystals of four representative orientations (rotated-Cube, Goss, Copper, and Brass) after rolling and plain strain compression was simulated, and the predictions have been validated by the experimental observations. In the rotated-Cube and Goss, the redundant shear strain and crystal rotation were in the same pattern, alternating along the thickness, while the relation between them was not obvious for the Copper and Brass due to their asymmetrical distributions of activated slip systems. The relations between slip system activation, crystal rotation, and shear strain were investigated based on the CPFE model, and the correlation between shear strain and crystal rotation has been built.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Paul, J.H. Driver, Z. Jasieński, Acta Mater. 50, 815 (2002)

    Article  Google Scholar 

  2. N. Afrin, M.Z. Quadir, W. Xu, M. Ferry, Acta Mater. 60, 6288 (2012)

    Article  Google Scholar 

  3. Q. Liu, J. Wert, N. Hansen, Acta Mater. 48, 4267 (2000)

    Article  Google Scholar 

  4. H. Paul, J. Driver, C. Maurice, M. Miszczyk, D. Piot, Arch. Metall. Mater. 54, 65 (2009)

    Google Scholar 

  5. K. Kashihara, H. Inagaki, Ceram. Trans. 201, 453 (2008)

    Article  Google Scholar 

  6. Z.J. Li, A. Godfrey, Q. Liu, Acta Mater. 52, 149 (2004)

    Article  Google Scholar 

  7. M. Wrobel, S. Dymek, M. Blicharski, S. Gorczyca, Mater. Res. Adv. Technol. 85, 415 (1994)

    Google Scholar 

  8. Q. Liu, N. Hansen, Proc. R. Soc. A 454, 2555 (1998)

    Article  Google Scholar 

  9. J.A. Wert, Acta Mater. 50, 3125 (2002)

    Article  Google Scholar 

  10. P. Van Houtte, S. Li, M. Seefeldt, L. Delannay, Int. J. Plast. 21, 589 (2005)

    Article  Google Scholar 

  11. H.R. Wenk, P. Van Houtte, Rep. Prog. Phys. 67, 1367 (2004)

    Article  Google Scholar 

  12. C. Lu, G.Y. Deng, A.K. Tieu, L.H. Su, H.T. Zhu, X.H. Liu, Acta Mater. 59, 3581 (2011)

    Article  Google Scholar 

  13. C. Zhang, L.W. Zhang, W.F. Shen, Y.N. Xia, Y.T. Yan, Acta Metall. Sin. (Engl. Lett.) 30, 79 (2017)

    Article  Google Scholar 

  14. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Acta Mater. 58, 1152 (2010)

    Article  Google Scholar 

  15. D. Raabe, F. Roters, F. Barlat, L.-Q. Chen (eds.), Continuum Scale Simulation of Engineering Materials: Fundamentals-Microstructures-Process Applications (Wiley, Weinheim, 2004)

  16. K. Kashihara, Y. Tsujimoto, D. Terada, N. Tsuji, Mater. Charact. 75, 129 (2012)

    Article  Google Scholar 

  17. T. Inoue, N. Tsuji, Comput. Mater. Sci. 46, 261 (2009)

    Article  Google Scholar 

  18. A. Albou, J.H. Driver, C. Maurice, Acta Mater. 58, 3022 (2010)

    Article  Google Scholar 

  19. R.J. Asaro, J. Appl. Mech. 50, 921 (1983)

    Article  Google Scholar 

  20. R.J. Asaro, A. Needleman, Acta Metall. 33, 923 (1985)

    Article  Google Scholar 

  21. T.-Y. Wu, J.L. Bassani, C. Laird, Proc. R. Soc. A 435, 20 (1991)

    Article  Google Scholar 

  22. J.L. Bassani, T.-Y. Wu, Proc. R. Soc. A 435, 21 (1991)

    Article  Google Scholar 

  23. G. Lin, K.S. Havner, Int. J. Plast. 12, 695 (1996)

    Article  Google Scholar 

  24. P. Franciosi, M. Berveiller, A. Zaoui, Acta Metall. 28, 273 (1980)

    Article  Google Scholar 

  25. Q. Liu, C. Maurice, J. Driver, N. Hansen, Metall. Mater. Trans. A 29, 2333 (1998)

    Article  Google Scholar 

  26. D. Guanyu, Dissertation, University of Wollongong, 2014

  27. L.Y. Si, C. Lu, N.N. Huynh, A.K. Tieu, X.H. Liu, J. Mater. Process. Technol. 201, 79 (2008)

    Article  Google Scholar 

  28. P. Wei, C. Lu, H. Liu, L. Su, G. Deng, K. Tieu, Crystals 7, 12 (2017)

    Article  Google Scholar 

  29. A. Godfrey, D.J. Jensen, N. Hansen, Acta Mater. 46, 835 (1998)

    Article  Google Scholar 

  30. R.Y. Liang, P. Yang, W.M. Mao, Acta Metall. Sin. (Engl. Lett.) 30, 895 (2017)

    Article  Google Scholar 

  31. Z.S. Zhu, N.P. Chen, J.L. Gu, M.G. Yan, Acta Metall. Sin. Ser. A 9, 601 (1996)

    Google Scholar 

  32. S. Li, F. Sun, H. Li, Acta Mater. 58, 1317 (2010)

    Article  Google Scholar 

  33. C.S. Lee, B.J. Duggan, Metall. Trans. A 22, 2637 (1991)

    Article  Google Scholar 

  34. J.X. Li, X.H. Liu, G.D. Wang, Acta Metall. Sin. (Engl. Lett.) 15, 312 (2002)

    Google Scholar 

Download references

Acknowledgements

The simulation was performed on the HPC cluster of the University of Wollongong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Lu, C., Tieu, K. et al. Correlation Between Crystal Rotation and Redundant Shear Strain in Rolled Single Crystals: A Crystal Plasticity FE Analysis. Acta Metall. Sin. (Engl. Lett.) 32, 452–460 (2019). https://doi.org/10.1007/s40195-018-0859-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0859-5

Keywords

Navigation