Skip to main content
Log in

Degradation Characters of La-Mg-Ni-Based Metal Hydride Alloys: Corrosion and Pulverization Behaviors

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Degradation behaviors of three typical La-Mg-Ni alloys, La2MgNi9, La1.5Mg0.5Ni7 and La4MgNi19, were studied. La1.5Mg0.5Ni7 with (La,Mg)2Ni7 as main phase presents better discharge capacity and cycling stability. The three alloys suffer severe pulverization and corrosion after electrochemical cycles, which are considered to be the significant factor attributing to the capacity deterioration. However, the overall corrosion extent of the three cycled alloys aggravates successively, which is inconsistent with the result that La2MgNi9 presented poor cycling stability and also the assumption that alloy with high Mg content is easy to be corroded. The intrinsic anti-corrosion and anti-pulverization characteristics of the three alloys are mainly focused in this work. Immersion corrosion experiments demonstrate that the Mg-rich phases are more easily to be corroded. The corrosion resistance of the three alloys presents an improved trend which is inversely proportional to abundance of the Mg-rich phases. However, the anti-pulverization abilities present an inverse trend, which is closely related to the mechanical property of various phase structures. LaNi5 with the highest hardness is easy to crack, but the soft (La,Mg)Ni2 is more resistant to crack formation and spreading. Thus, the weaker corrosion of La2MgNi9 after electrochemical cycling is attributed to the better intrinsic anti-pulverization capability though the anti-corrosion is poor. As La4MgNi19 possesses excellent corrosion resistance, enhancement of the anti-pulverization ability is urgent for improvement in the cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Chen, N. Kuriyama, H.T. Takeshita, H. Tanaka, T. Sakai, M. Haruta, Electrochem. Solid-State Lett. 3, 249 (2000)

    Article  Google Scholar 

  2. Y.H. Zhang, Z.M. Yuan, T. Yang, Z.H. Hou, D.L. Zhao, Acta Metall. Sin. (Engl. Lett.) 28, 826 (2015)

    Article  Google Scholar 

  3. S. Yasuoka, Y. Magari, T. Murata, T. Tadayoshi, J. Ishida, H. Nakamura, T. Nohma, K. Masaru, J. Power Sour. 156, 662 (2006)

    Article  Google Scholar 

  4. Y.F. Liu, Y.H. Cao, L. Huang, M.X. Gao, H.G. Pan, J. Alloys Compd. 509, 675 (2011)

    Article  Google Scholar 

  5. J.J. Liu, S.M. Han, Y. Li, L. Zhang, Y.M. Zhao, S.Q. Yang, B.Z. Liu, Int. J. Hydrogen Energy 41, 20261 (2016)

    Article  Google Scholar 

  6. J. Guo, D. Huang, G.X. Li, S.Y. Ma, W.L. Wei, Mater. Sci. Eng. B 131, 169 (2006)

    Article  Google Scholar 

  7. B. Liao, Y.Q. Lei, G.L. Lu, L.X. Chen, H.G. Pan, Q.D. Wang, J. Alloys Compd. 356–357, 746 (2003)

    Article  Google Scholar 

  8. T. Yang, T.T. Zhai, Z.M. Yuan, W.G. Bu, S. Xu, Y.H. Zhang, J. Alloys Compd. 617, 29 (2014)

    Article  Google Scholar 

  9. X. Cai, F.S. Wei, F.N. Wei, H.H. Lu, Acta Metall. Sin. (Engl. Lett.) 29, 614 (2017)

    Article  Google Scholar 

  10. Y. Zhang, F.S. Wei, J.N. Xiao, X. Cai, Acta Metall. Sin. (Engl. Lett.) (2017). https://doi.org/10.1007/s40195-017-0577-4

    Google Scholar 

  11. T. Sakai, K. Oguro, H. Miyamura, N. Kuriyama, A. Kato, H. Ishikawa, J. Less-Common Met. 161, 193 (1990)

    Article  Google Scholar 

  12. D. Chartouni, F. Meli, A. Züttel, K. Gross, L. Schlapbach, J. Alloys Compd. 241, 160 (1996)

    Article  Google Scholar 

  13. B. Liao, Y.Q. Lei, L.X. Chen, G.L. Lu, H.G. Pan, Q.D. Wang, J. Power Sour. 129, 358 (2004)

    Article  Google Scholar 

  14. Y.F. Liu, H.G. Pan, Y.J. Yue, X.F. Wu, N. Chen, Y.Q. Lei, J. Alloys Compd. 395, 291 (2005)

    Article  Google Scholar 

  15. X.Z. Sun, H.G. Pan, M.X. Gao, R. Li, Y. Lin, S. Ma, Trans. Nonferrous Met. Soc. China 16, 8 (2006)

    Article  Google Scholar 

  16. P. Zhang, Y.N. Liu, J.W. Zhu, X.D. Wei, G. Yu, Int. J. Hydrogen Energy 32, 2488 (2007)

    Article  Google Scholar 

  17. Y.H. Zhang, D.L. Zhao, B.W. Li, H.P. Ren, X.P. Dong, X.L. Wang, Trans. Nonferrous Met. Soc. China 17, 816 (2007)

    Article  Google Scholar 

  18. Y.M. Li, H.W. Zhang, Y.H. Zhang, H.P. Ren, Rare Met. 36, 101 (2017)

    Article  Google Scholar 

  19. Y.M. Li, H.P. Ren, Y.H. Zhang, Z.C. Liu, H.W. Zhang, Int. J. Hydrogen Energy 40, 7093 (2015)

    Article  Google Scholar 

  20. F. Li, K. Young, T. Ouchi, M.A. Fetcenko, J. Alloys Compd. 471, 371 (2009)

    Article  Google Scholar 

  21. J.J. Liu, Y. Li, D. Han, S.Q. Yang, X.C. Chen, L. Zhang, S.M. Han, J. Power Sour. 300, 77 (2015)

    Article  Google Scholar 

  22. J.J. Liu, S.M. Han, Y. Li, S.Q. Yang, W.Z. Shen, L. Zhang, Y. Zhou, J. Alloys Compd. 552, 119 (2013)

    Article  Google Scholar 

  23. J. Kleperis, G. Wójcil, A. Czerwinski, J. Skowronski, M. Kopczyk, M. Beltowska-Brzezinska, J. Solid State Electrochem. 5, 229 (2001)

    Article  Google Scholar 

  24. W.K. Hu, R.V. Denys, C.C. Nwakwuo, T. Holm, J.P. Maehlen, J.K. Solberg, V.A. Yartys, Electrochim. Acta 96, 27 (2013)

    Article  Google Scholar 

  25. J. Monnier, H. Chen, S. Joiret, J. Bourgon, M. Latroche, J. Power Sour. 266, 162 (2014)

    Article  Google Scholar 

  26. F.L. Zhang, Y.C. Luo, J.P. Chen, R.X. Yan, J.H. Chen, J. Alloys Compd. 430, 302 (2007)

    Article  Google Scholar 

  27. J.C. Crivello, J. Zhang, M. Latroche, J. Phys. Chem. C 115, 25470 (2011)

    Article  Google Scholar 

  28. R.V. Denys, V.A. Yartys, J. Alloys Compd. 509, S540 (2011)

    Article  Google Scholar 

  29. R.V. Denys, A.B. Riabov, V.A. Yartys, M. Sato, R.G. Delaplane, J. Solid State Chem. 181, 812 (2008)

    Article  Google Scholar 

  30. M.N. Guzik, B.C. Hauback, K. Yvon, J. Solid State Chem. 186, 9 (2012)

    Article  Google Scholar 

  31. J. Nakamura, K. Iwase, H. Hayakawa, Y. Nakamura, E. Akiba, J. Phys. Chem. C 113, 5853 (2009)

    Article  Google Scholar 

  32. M.X. Gao, S.C. Zhang, H. Miao, Y.F. Liu, H.G. Pan, J. Alloys Compd. 489, 552 (2010)

    Article  Google Scholar 

  33. Y.F. Liu, H.G. Pan, M.X. Gao, Y.Q. Lei, Q.D. Wang, J. Alloys Compd. 403, 296 (2005)

    Article  Google Scholar 

  34. Y.M. Li, Y.H. Zhang, H.P. Ren, Z.C. Liu, H. Sun, Int. J. Hydrogen Energy 41, 18571 (2016)

    Article  Google Scholar 

  35. R. Tang, Y.N. Liu, C.C. Zhu, J.W. Zhu, G. Yu, Intermetallics 14, 361 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 51761032) and the Natural Science Foundation Application of Inner Mongolia (No. 2014MS0526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ping Ren.

Additional information

Available online at http://link.springer.com/journal/40195

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6720 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YM., Zhang, YH. & Ren, HP. Degradation Characters of La-Mg-Ni-Based Metal Hydride Alloys: Corrosion and Pulverization Behaviors. Acta Metall. Sin. (Engl. Lett.) 31, 723–734 (2018). https://doi.org/10.1007/s40195-017-0696-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0696-y

Keywords

Navigation