Skip to main content
Log in

Influence of Microstructural Evolution on the Hot Deformation Behavior of an Fe–Mn–Al Duplex Lightweight Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The hot deformation behavior of Fe–26Mn–6.2Al–0.05C steel was studied by experimental hot compression tests in the temperature range of 800–1050 °C and strain rate range of 0.01–30 s1 on a Gleeble-3500 thermal simulation machine. The microstructural evolution during the corresponding thermal process was observed in situ by confocal laser scanning microscopy. Electron backscattered diffraction and transmission electron microscopy analyses were carried out to observe the microstructural morphology before and after the hot deformation. Furthermore, interrupted compression tests were conducted to correlate the microstructural characteristics and softening mechanisms at different deformation stages. The results showed that hot compression tests of this steel were all carried out on a duplex matrix composed of austenite and δ-ferrite. As the deformation temperature increased from 800 to 1050 °C, the volume fraction of austenite decreased from 70.9% to 44.0%, while that of δ-ferrite increased from 29.1% to 56.0%. Due to the different stress exponents (n) and apparent activation energies (Q), the generated strain was mostly accommodated by δ-ferrite at the commencement of deformation, and then both dynamic recovery and dynamic recrystallization occurred earlier in δ-ferrite than in austenite. This interaction of strain partitioning and unsynchronized softening behavior caused an abnormal hot deformation behavior profile in the Fe–Mn–Al duplex steel, such as yield-like behavior, peculiar work-hardening behavior, and dynamic softening behavior, which are influenced by not only temperature and strain rate but also by microstructural evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W. Yu, L.X. Xu, Y. Zhang, B. Wang, C.Y. He, E.T. Dong, Trans. Mater. Heat Treat. 36(10), 261 (2015)

    Google Scholar 

  2. L.J. Wang, W. Yu, H.B. Wu, Q.W. Cai, Q.G. Qi, Heat Treat. Met. 35(7), 5 (2010)

    Google Scholar 

  3. C.H. Seo, K.H. Kwon, K. Choi, K.H. Kim, J.H. Kwak, S. Lee, N.J. Kim, Scr. Mater. 66(8), 519 (2012)

    Article  Google Scholar 

  4. Q. Yang, J.F. Wang, Y. Cong, L. Wang, Baosteel Technol. 3, 1 (2015)

    Article  Google Scholar 

  5. Q. Yang, J.F. Wang, Y. Cong, L. Wang, Baosteel Technol. 4, 1 (2015)

    Google Scholar 

  6. Y.H. Yang, B. Yan, Mater. Sci. Eng. A 579, 194 (2013)

    Article  Google Scholar 

  7. L. Duprez, B.C. De Cooman, N. Akdut, Metall. Mater. Trans. A 33(7), 1931 (2002)

    Article  Google Scholar 

  8. G.W. Fan, J. Liu, P.D. Han, G.J. Qiao, Mater. Sci. Eng. A 515(1), 108 (2009)

    Article  Google Scholar 

  9. O. Balancin, W.A.M. Hoffmann, J.J. Jonas, Metall. Mater. Trans. A 31(5), 1353 (2000)

    Article  Google Scholar 

  10. D.J. Seol, Y.M. Won, T. Yeo, K.H. Oh, J.K. Park, C.H. Yim, ISIJ Int. 39(1), 91 (1999)

    Article  Google Scholar 

  11. A.S. Hamada, L.P. Karjalainen, M.C. Somani, R.M. Ramadan, Mater. Sci. Forum 550, 217 (2007)

    Article  Google Scholar 

  12. F.Q. Yang, R.B. Song, L.F. Zhang, C. Zhao, Proc. Eng. 81, 456 (2014)

    Article  Google Scholar 

  13. X.F. Zhang, H. Yang, D.P. Leng, L. Zhang, Z.Y. Huang, G. Chen, J. Iron. Steel Res. Int. 23(9), 963 (2016)

    Article  Google Scholar 

  14. Z.J. Miao, A.D. Shan, W. Wei, L.U. Jun, W.L. Xu, H.W. Song, Trans. Nonferrous Met. Soc. China 21(2), 236 (2011)

    Article  Google Scholar 

  15. A. Pinol-Juez, A. Iza-Mendia, I. Gutierrez, Metall. Mater. Trans. A 31(6), 1671 (2000)

    Article  Google Scholar 

  16. B.S. Xie, Q.W. Cai, W. Yu, L.X. Xu, Z. Ning, Acta Metall. Sin. (Engl. Lett.) 30(3), 250 (2017)

    Article  Google Scholar 

  17. J. Chen, H.T. Li, J.P. Hu, W.H. Yu, Hot Working Technol. 43(9), 64 (2014)

    Google Scholar 

  18. T. Yan, E.L. Yu, Y.Q. Zhao, Iron Steel 48(9), 58 (2013)

    Google Scholar 

  19. L. Chen, L.M. Wang, X.J. Du, X. Liu, Acta Metall. Sin. 46, 52 (2010) (in Chinese)

    Article  Google Scholar 

  20. B.J. Yu, X.J. Guan, L.J. Wang, Q.K. Zeng, Q.Q. Liu, Y. Cao, Acta Metall. Sin. (Engl. Lett.) 24(4), 287 (2014)

    Google Scholar 

  21. B.S. Xie, Q.W. Cai, W. Yu, L.X. Xu, Z. Ning, J. Mater. Eng. Perform. 25(12), 5127 (2016)

    Article  Google Scholar 

  22. D. Samantaray, S. Mandal, C. Phaniraj, A.K. Bhaduri, Mater. Sci. Eng. A 528(29), 8565 (2011)

    Article  Google Scholar 

  23. Z. Fei, S. Jian, X.D. Yan, J.L. Sun, J. Na, Z. Hua, Acta Metall. Sin. 50(6), 691 (2014) (in Chinese)

    Google Scholar 

  24. C.L. Zhu, J.B. Zhang, C.Q. Cheng, J. Zhao, Acta Metall. Sin. 49(10), 1275 (2013) (in Chinese)

    Article  Google Scholar 

  25. C.J. Wang, K.K. Deng, S.S. Zhou, W. Liang, Acta Metall. Sin. (Engl. Lett.) 29(6), 527 (2016)

    Article  Google Scholar 

  26. G.Y. Lin, Z.F. Zhang, H. Zhang, D.S. Peng, J. Zhou, Acta Metall. Sin. (Engl. Lett.) 21(2), 109 (2008)

    Article  Google Scholar 

  27. A. Momeni, K. Dehghani, Mater. Sci. Eng. A 528(3), 1448 (2011)

    Article  Google Scholar 

  28. Y.P. Li, R.B. Song, E.D. Wen, F.Q. Yang, Acta Metall. Sin. (Engl. Lett.) 29(5), 441 (2016)

    Article  Google Scholar 

  29. S. Kingklang, V. Uthaisangsuk, Metall. Mater. Trans. A 48(1), 95 (2017)

    Article  Google Scholar 

  30. X. Ma, C.W. Zheng, X.G. Zhang, D.Z. Li, Acta Metall. Sin. (Engl. Lett.) 29(12), 1127 (2016)

    Article  Google Scholar 

  31. H. Farnoush, A. Momeni, K. Dehghani, J. Aghazadeh Mohandesi, H. Keshmiri, Mater. Des. 31(1), 220 (2010)

    Article  Google Scholar 

  32. J.R. Li, G. Chen, C. Lie, H. Zuo, Y.Z. Liu, Acta Metall. Sin. 50(9), 1063 (2014) (in Chinese)

    Google Scholar 

  33. J. Johansson, M. Odén, Metall. Mater. Trans. A 31(6), 1557 (2000)

    Article  Google Scholar 

  34. P. Cizek, B.P. Wynne, W.M. Rainforth, J. Phys. Conf. Ser. 26(1), 331 (2006)

    Article  Google Scholar 

  35. Y.Q. Ning, T. Wang, M.W. Fu, M.Z. Li, L. Wang, C.D. Zhao, Mater. Sci. Eng. A 642, 187 (2015)

    Article  Google Scholar 

  36. I.S. Nikulin, N.V. Kamyshanchenko, T.B. Nikulicheva, M.V. Mishunin, K.A. Vokhmyanina, Mater. Lett. 182, 253 (2016)

    Article  Google Scholar 

  37. Z.Y. Liu, T.T. Huang, W.J. Liu, S.B. Kang, Trans. Nonferrous Met. Soc. China 26(2), 378 (2016)

    Article  Google Scholar 

  38. D.J. Li, Y.R. Feng, S.Y. Song, Q. Liu, Q. Bai, F.Z. Ren, F.S. Shangguan, J. Alloys Compd. 618, 768 (2015)

    Article  Google Scholar 

  39. M. Ma, H. Ding, Z.Y. Tang, J.W. Zhao, Z.H. Jiang, G.W. Fan, J. Iron. Steel Res. Int. 23(3), 244 (2016)

    Article  Google Scholar 

  40. I. Alvarez-Armas, M.C. Marinelli, S. Hereñú, S. Degallaix, A.F. Armas, Acta Mater. 54(19), 5041 (2006)

    Article  Google Scholar 

  41. Y. Liu, H. Yan, X. Wang, M. Yan, Mater. Sci. Eng. A 575, 41 (2013)

    Article  Google Scholar 

  42. A. Mohamadizadeh, A. Zarei-Hanzaki, H.R. Abedi, S. Mehtonen, D. Porter, Mater. Charact. 107, 293 (2015)

    Article  Google Scholar 

  43. D. Samantaray, S. Mandal, M. Jayalakshmi, C.N. Athreya, A.K. Bhaduri, V. Subramanya Sarma, Mater. Sci. Eng. A 598, 368 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

This research was financially supported by the National Natural Science Foundation of China (No. 51474031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Bin Wu.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, LX., Wu, HB. & Wang, XT. Influence of Microstructural Evolution on the Hot Deformation Behavior of an Fe–Mn–Al Duplex Lightweight Steel. Acta Metall. Sin. (Engl. Lett.) 31, 389–400 (2018). https://doi.org/10.1007/s40195-017-0655-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0655-7

Keywords

Navigation