Skip to main content
Log in

Stress and Springback Analyses of API X70 Pipeline Steel Under 3-Roller Bending via Finite Element Method

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

3-Roller bending is a widely applied manufacturing process, particularly in structural steel pipe industry. However, due to the difficulty and high cost of measuring stress distribution inside sheet material via traditional method, internal stress/strain response during forming is largely unexplored. The focuses of this study are two: (1) to map the radii of curvature as well as the stress inside the work piece during forming by utilizing the meshing mechanism of finite element method, and (2) to further provide some numeric guidelines for the configuration of the rolling system in order to improve production efficiency and product quality. The results of this study indicate that: (1) it is crucial to properly choose forming parameter in order to produce product with desired radii; (2) much like a gradual springback process, the radii of curvature gradually increase from the top roller to the exit-side bottom roller; (3) under the assumptions made in this study, to produce pipes with a specified diameter with varying configurations of the 3-roller system will not significantly change the final residual stress; and (4) finally, shifting of the neutral axis up to 2.0% of the thickness toward the compressing side during the forming process is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

U :

Y displacement of Roller 1 (top roller) between initial contact position and final rolling position (mm)

A :

The X component of distance between Roller 2 (bottom front) and Roller 3 (bottom rear) (mm)

S :

The X component of distance between Roller 1 and Roller 2 (mm)

Si :

\(\frac{S}{A}\) (no unit)

H :

Y component of distance between Roller 2 and Roller 3 (mm)

R 1 :

Radius of Roller 1 (mm)

R b :

Radius of Roller 2 and Roller 3 (mm)

t :

Thickness of work piece (mm)

µ :

Friction coefficient (no unit)

V rel :

Relative speed between two contact surfaces when sliding (mm/s)

FACT:

Ratio of static to dynamic coefficient of friction (no unit)

DC:

Decay coefficient (no unit)

r 0 :

Initial radii of curvature before springback (at point 1) (mm)

r f :

Final radii of curvature after springback (after point 7) (mm)

r u :

Upper limit of r 0 (mm)

E :

Young’s modulus (MPa)

K :

Strength coefficient (MPa)

K′ :

\(K\left( {\frac{2}{\sqrt 3 }} \right)^{n + 1}\) (MPa)

n :

Strain hardening exponent (no unit)

v :

Poisson’s ratio (no unit)

σ y :

Yield stress (MPa)

\(\varepsilon_{\text{y}}\) :

Strain at yield point (no unit)

D 0 :

\(2r_{0}\) (mm)

D f :

2r f (mm)

References

  1. M. Hua, D.H. Sansome, K. Baines, J. Mater. Process. Technol. 52, 425 (1995)

    Article  Google Scholar 

  2. M.K. Chudasama, H.K. Raval, Int. J. Mater. Form. 6, 303 (2013)

    Article  Google Scholar 

  3. M. Hua, I.M. Cole, K. Baines, K.P. Rao, J. Mater. Process. Technol. 67, 189 (1997)

    Article  Google Scholar 

  4. A. Ktari, Z. Antar, N. Haddar, K. Elleuch, J. Mech. Sci. Technol. 26, 123 (2012)

    Article  Google Scholar 

  5. A.H. Gandhi, H.K. Raval, J. Mater. Process. Technol. 197, 268 (2008)

    Article  Google Scholar 

  6. Z. Feng, H. Champliaud, Simul. Model. Pract. Theory 19, 1913 (2011)

    Article  Google Scholar 

  7. G. Van Boven, W. Chen, R. Rogge, Acta Mater. 55, 29 (2007)

    Article  Google Scholar 

  8. R.A. Carneiro, R.C. Ratnapuli, V. de Freitas, Cunha Lins. Mater. Sci. Eng. A 357, 104 (2003)

    Article  Google Scholar 

  9. R.N. Parkins, Corros. 2000, 1 (2000)

    Google Scholar 

  10. C.W. Choi, H.J. Koh, S. Lee, Metall. Mater. Trans. A 31, 2669 (2000)

    Article  Google Scholar 

  11. ANSYS Inc., ANSYS Mechanical APDL Material Refence, Release 15.0, 27 (2013)

  12. W.F. Hosford, R. Caddell, Metal Forming (Cambridge University Press, Cambridge, 2011)

    Book  Google Scholar 

  13. C. Bouhelier, Formage des tôles fortes (TI, Paris, 1982)

    Google Scholar 

  14. S. Timoshenko, History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structures (Dover Publications, New York, 1953)

    Google Scholar 

  15. W. Johnson, P.B. Mellor, Engineering Plasticity (Halsted Press, New York, 1983)

    Google Scholar 

  16. J. Rondal, Constr. Build. Mater. 1, 150 (1987)

    Article  Google Scholar 

  17. B. Goes, J. Gil-Sevillano, U. D′Haene, Int. J. Mech. Sci. 41, 1031 (1999)

    Article  Google Scholar 

  18. Z. Marciniak, J.L. Duncan, S.J. Hu, Mechanics of Sheet Metal Forming (Butterworth-Heinemann, Oxford, 2002)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by the LSU Graduate School through the Economic Development Award. The working knowledge provided by Dr. Kompotiatis of the STUPP Corporation is most valuable to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Warren Liao.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Warren Liao, T. & Kompotiatis, L. Stress and Springback Analyses of API X70 Pipeline Steel Under 3-Roller Bending via Finite Element Method. Acta Metall. Sin. (Engl. Lett.) 30, 470–482 (2017). https://doi.org/10.1007/s40195-016-0527-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0527-6

Keywords

Navigation