Skip to main content
Log in

Neutron Diffraction Study of Low-Cycle Fatigue Behavior in an Austenitic–Ferritic Stainless Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

By performing in situ neutron diffraction experiments on an austenitic–ferritic stainless steel subjected to low-cycle fatigue loading, the deformation heterogeneity of the material at microscopic level has been revealed. Based on the in situ neutron diffraction data collected from a single specimen together with the mechanical properties learned from the ex situ micro-hardness, a correlation has been found. The performance versus diffraction-profile correlation agrees with the cyclic-deformation-induced dislocation evolution characterized by ex situ TEM observation. Moreover, based on the refined neutron diffraction-profile data, evident strain anisotropy is found in the austenite. The high anisotropy in this phase is induced by the increase in dislocation density and hence contributes to the hardening of the steel at the first 10 cycles. Beyond 10 fatigue cycles, the annihilation and the rearrangement of the dislocations in both austenitic and ferritic phases softens the plastically deformed specimen. The study suggests that the evolution of strain anisotropy among the differently oriented grains and micro-strain induced by lattice distortion in the respective phases mostly affect the cyclic-deformation-induced mechanical behavior of the steel at different stages of fatigue cycles. The stress discrepancy between phases is not the dominant mechanism for the deformation of the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Harjo, Y. Tomota, Acta Mater. 47, 353 (1998)

    Article  Google Scholar 

  2. Y. Tomota, P. Lukas, S. Harjo, J.H. Park, N. Tsuchida, D. Neov, Acta Mater. 51, 819 (2003)

    Article  Google Scholar 

  3. C. Larsson, B. Clausen, T.M. Holden, M.A.M. Bourke, Scr. Mater. 51, 571 (2004)

    Article  Google Scholar 

  4. Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, Y. Morii, Acta Mater. 52, 5737 (2004)

    Article  Google Scholar 

  5. N. Jia, R.L. Peng, Y.D. Wang, G.C. Chai, J. Johansson, G. Wang, P.K. Liaw, Acta Mater. 54, 3907 (2006)

    Article  Google Scholar 

  6. M. Mineur, P. Villechaise, J. Mendez, Mater. Sci. Eng. A 286, 257 (2000)

    Article  Google Scholar 

  7. I. Alvarez-Armas, M.C. Marinelli, S. Hereñú, S. Degallaix, A.F. Armas, Acta Mater. 54, 5041 (2006)

    Article  Google Scholar 

  8. S. Wroński, A. Baczmański, R. Dakhlaoui, C. Braham, K. Wierzbanowski, E.C. Oliver, Acta Mater. 55, 6219 (2007)

    Article  Google Scholar 

  9. X. Li, T.F. Jing, M.M. Lu, R. Xu, B.Y. Liang, J.W. Zhang, J. Mater. Sci. Technol. 27, 364 (2012)

    Article  Google Scholar 

  10. C.C. Shih, N.J. Ho, H.L. Huang, J. Mater. Sci. 45, 818 (2010)

    Article  Google Scholar 

  11. R.L. Peng, G.C. Chai, N. Jia, Y.D. Wang, S. Johansson, Fatigue Fract. Eng. Mater. Struct. 31, 892 (2008)

    Article  Google Scholar 

  12. S.M. Yin, S.X. Li, J. Mater. Sci. Technol. 29, 775 (2013)

    Article  Google Scholar 

  13. Y.V. Taran, M.R. Daymond, J. Schreiber, Appl. Phys. A 74, 1385 (2002)

    Article  Google Scholar 

  14. T. Lorentzen, M.R. Daymond, B. Clausen, C.N. Tomé, Acta Mater. 50, 1627 (2002)

    Article  Google Scholar 

  15. J.D. Almer, J.B. Cohen, B. Moran, Mater. Sci. Eng. A 284, 268 (2000)

    Article  Google Scholar 

  16. I. Alvarez-Armas, U. Krupp, M. Balbi, S. Hereñú, M.C. Marinelli, H. Knobbe, Int. J. Fatigue 41, 95 (2012)

    Article  Google Scholar 

  17. J. Johansson, M. Odén, Metall. Mater. Trans. A 31, 1557 (2000)

    Article  Google Scholar 

  18. M.A.M. Bourke, D.C.E. Dunand, E. Üstündag, Appl. Phys. A 74, 1707 (2002)

    Article  Google Scholar 

  19. A.C. Larson, R.B. Von Dreele, Report No. LAUR 86-748, Los Alamos National Laboratory, Los Alamos, 2004

  20. N. Jia, R.L. Peng, D.W. Brown, B. Clausen, Y.D. Wang, Metall. Mater. Trans. A 39, 3134 (2008)

    Article  Google Scholar 

  21. T. Ungár, O. Castelnau, G. Ribárik, M. Drakopoulos, J.L. Béchade, T. Chauveau, A. Snigirev, I. Snigireva, C. Schroer, B. Bacroix, Acta Mater. 55, 1117 (2007)

    Article  Google Scholar 

  22. B. Jóni, E. Schafler, M. Zehetbauer, G. Tichy, T. Ungár, Acta Mater. 61, 632 (2013)

    Article  Google Scholar 

  23. E.W. Huang, R. Barabash, N. Jia, Y.D. Wang, G.E. Ice, B. Clausen, J. Horton, P.K. Liaw, Metall. Mater. Tran. A 39, 3079 (2008)

    Article  Google Scholar 

  24. E. Kröner, Z. Phys. 151, 504 (1958)

    Article  Google Scholar 

  25. B. Clausen, T. Lorentzen, T. Leffers, Acta Mater. 46, 3087 (1998)

    Article  Google Scholar 

  26. G. Simmons, H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd edn. (MIT, Cambridge, 1971)

    Google Scholar 

  27. H.M. Ledbetter, Phys. Status Solidi A 85, 89 (1984)

    Article  Google Scholar 

  28. T.P. Kruml, J. Polak, J. Obrtlik, S. Degallaix, Acta Mater. 45, 5145 (1997)

    Article  Google Scholar 

  29. T.H. Courtney, Mechanical Behavior of Materials, 2nd edn. (McGraw-Hill, New York, 2000), p. 116

    Google Scholar 

  30. G. Wahlberg, G.L. Dunlop, in Proceedings of Stainless Steels’87, Institute of Metals, London, pp. 291, 1987

  31. J.-O. Nilsson, Scr. Metall. 17, 593 (1983)

    Article  Google Scholar 

  32. J.J. Moverare, M. Odén, Mater. Sci. Eng. A 337, 25 (2002)

    Article  Google Scholar 

  33. I. Alvarez-Armas, P. Evrard, V. Aubin, S. Degallaix-Moreuil, Mater. Test. 51, 349 (2009)

    Article  Google Scholar 

  34. E.W. Huang, R.I. Barabash, Y.D. Wang, B. Clausen, L. Li, P.K. Liaw, G.E. Ice, Y. Ren, H. Choo, L.M. Pike, D.L. Klarstrom, Int. J. Plast. 24, 1440 (2008)

    Article  Google Scholar 

  35. E.W. Huang, R.I. Barabash, B. Clausen, Y.L. Liu, J.J. Kai, G.E. Ice, P. Woods, P.K. Liaw, Int. J. Plast. 26, 1124 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the Fundamental Research Funds for the Central Universities (Nos. N130510001 and L1502029), the Program for New Century Excellent Talents in University (No. NCET-13-0104) and the National Natural Science Foundation of China (Nos. 51202256, 51201027). We also gratefully acknowledge E-Wen Huang at National Central University for very valuable discussions. The Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center is funded by the Department of Energy’s Office of Basic Energy Science. The Los Alamos National Laboratory is operated by the Los Alamos National Security LLC under the DOE Contract of DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Jia.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, MW., Jia, N., Shi, F. et al. Neutron Diffraction Study of Low-Cycle Fatigue Behavior in an Austenitic–Ferritic Stainless Steel. Acta Metall. Sin. (Engl. Lett.) 28, 1247–1256 (2015). https://doi.org/10.1007/s40195-015-0319-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0319-4

Keywords

Navigation