Skip to main content
Log in

Trend and innovations in laser beam welding of wrought aluminum alloys

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The drive toward fulfilling weight reduction obligation, superior weld quality requirement, and industrial manufacturing rationale has sprung up considerable interest in applying laser welding technology on aluminum alloys. Nevertheless, porosity, solidification cracking, and surface reflectivity have been the major banes of laser welding of aluminum alloys. However, literature has shown that positive efforts have been accomplished in reducing these fundamental concerns by adopting careful selection of welding procedure, modification of pure laser welding techniques, and the use of appropriate filler metal. Albeit, there is still upbeat progression on the application and improvement of laser welding of aluminum alloys. At present, laser welding technology has the potential of fulfilling industrial requirements in joining lightweight aluminum alloys because of its capacity for automation and intrinsic flexibility, precision and repeatability, low general heat input, high welding speed, and low weld distortion. As a result, this report examines the available and current status of laser technologies in welding aluminum alloys. It further categorizes the laser technologies of aluminum alloys into four assemblages, namely, pure or single-beam laser welding, laser-arc hybrid welding, tailored heat source laser welding, and other innovative laser welding technologies, respectively. Mechanical, corrosion, and microstructural behaviors of laser welded aluminum alloys are also studied. Conversely, some of the research areas that need further investigations are proposed. Corrosion behavioral properties, influence of micropores on fatigue and quasi-static tensile strength, and toughness characterization of laser welded aluminum alloys are insufficient in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. You DY, Gao XD, Katayama S (2014) Review of laser welding monitoring. Sci Technol Weld Join 19(3):181–201. doi:10.1179/1362171813y.0000000180

    Article  Google Scholar 

  2. Gene Mathers: The welding of aluminium and its alloys, Woodhead Publishing Limited (2002) ISBN 1 85573 567 9, Pg. 1–31, DOI: 10.1533/9781855737631

  3. Ion JC (2000) Laser beam welding of wrought aluminum alloys. Sci Technol Weld Join 5(5):265–275. doi:10.1179/136217100101538308

    Article  Google Scholar 

  4. Coniglio N, Patry M (2013) Measuring laser weldability of aluminum alloys using controlled restraint weldability test. Sci Technol Weld Join 18(7):573–580. doi:10.1179/1362171813y.0000000137

    Article  Google Scholar 

  5. von Witzendorff P, Hermsdorf J, Kaierle S, Suttmann O, Overmeyer L (2015) Science and technology of welding and joining. Double pulse laser welding of 6082 aluminum alloys, 2015, Vol. 20, No. 1, pp. 42–47; doi: 10.1179/1362171814Y.0000000255

  6. Matsunawa A (2001) Problems and solutions in deep penetration laser welding. Sci Technol Weld Join 6(6):351–354. doi:10.1179/stw.2001.6.6.351

    Article  Google Scholar 

  7. Verhaeghe G and Hilton P (2004) Laser Welding of Low-Porosity Aerospace Aluminum Alloy, 34th International MATADOR Conference, 7th - 9th July 2004, UMIST, Manchester, UK, pp. 241 to 246; doi: 10.1007/978-1-4471-0647-0_36

  8. Page CJ, Devermann T, Biffin J, Blundell N (2002) Plasma augmented laser welding and its applications. Sci Technol Weld Join 7(1):1–10. doi:10.1179/136217102225001313

    Article  Google Scholar 

  9. Cai C, Peng GC, Li LQ, Chen YB, Qiao L (2014) Comparative study on laser welding characteristics of aluminum alloy under atmospheric and sub atmospheric pressures. Sci Technol Weld Join 19(7):547–553. doi:10.1179/1362171814y.0000000223

    Article  Google Scholar 

  10. TWI: URL: http://www.twi-global.com/ accessed on 10th May, 2015

  11. Sanchez-Amaya JM, Delgado T, De Damborenea JJ, Lopez V, Botana FJ (2009) Laser welding of AA 5083 samples by high power diode laser. Sci Technol Weld Join 14(1):78–86. doi:10.1179/136217108x347629

    Article  Google Scholar 

  12. Sheikhi M, Malek Ghaini F, Torkamany MJ, Sabbaghzadeh J (2009) Characterization of solidification cracking in pulsed Nd:YAG laser welding of 2024 aluminum alloy. Sci Technol Weld Join 14(2):161–165. doi:10.1179/136217108x386554

    Article  Google Scholar 

  13. Norman AF, Ducharme R, Mackwood A, Kapadia P, Prangnell PB (1998) Application of thermal modeling to laser beam welding of aluminum alloys. Sci Technol Weld Join 3(5):260–266. doi:10.1179/stw.1998.3.5.260

    Article  Google Scholar 

  14. Moore PL, Howse DS, Wallach ER (2004) Microstructures and properties of laser/arc hybrid welds and autogenous laser welds in pipeline steels, 2004, Vol. 9, No. 4, pp. 314–322; DOI: 10.1179/136217104225021652

  15. Long X, Khanna SK (2005) Residual stresses in spot welded new generation aluminum alloys Part B—finite element simulation of residual stresses in a spot weld in 5754 aluminum alloy. Sci Technol Weld Join 10(1):88–94. doi:10.1179/174329305x29483

    Article  Google Scholar 

  16. Ramasamy S, Albright CE (2001) CO2 and Nd–YAG laser beam welding of 5754–O aluminum alloy for automotive applications, 2001, Vol. 6, No. 3, pp. 182–190 doi: 10.1179/136217101101538730

  17. Rowe J (2012) Advanced materials in automotive engineering, Woodhead Publishing Limited, ISBN 978-1-84569-561-3 Pg. 6–14, doi: 10.1533/9780857095466

  18. Hu B, Richardson IM (2006) Mechanism and possible solution for transverse solidification cracking in laser welding of high strength aluminum alloys. Mater Sci Eng A 429(2006):287–294. doi:10.1016/j.msea.2006.05.040

    Article  Google Scholar 

  19. Babu SS, David SA, Vitek JM, Reed RW (2001) Solidification and microstructure modeling of welds in aluminum alloys 5754 and 611. Sci Technol Weld Join 6(1):31–40. doi:10.1179/136217101101538514

    Article  Google Scholar 

  20. Deutsch MG, Punkari A, Weckman DC, Kerr HW (2003) Weldability of 1.6 mm thick aluminum alloy 5182 sheet by single and dual beam Nd:YAG laser welding. Sci Technol Weld Join 8(4):246–256. doi:10.1179/136217103225005499

    Article  Google Scholar 

  21. Sudhakar I, Madhu V, Madhusudhan Reddy G, Srinivasa Rao K (2015) Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing. Def Technol 11(1):10–17. doi:10.1016/j.dt.2014.08.003

    Article  Google Scholar 

  22. Sekhar NC, Bjorneklett B (2002) Laser welding of complex aluminum structures. Sci Technol Weld Joining 7(1):19–25. doi:10.1179/136217102225002024

    Article  Google Scholar 

  23. Haferkamp H, Bunte J, Herzog D, Ostendorf A (2004) Laser based welding of cellular aluminum. Sci Technol Weld Join 9(1):65–71. doi:10.1179/136217104225017170

    Article  Google Scholar 

  24. AlShaer AW, Li L, Mistry A (2014) The effects of short pulse laser surface cleaning on porosity formation and reduction in laser welding of aluminum alloy for automotive component manufacture. Optics Laser Technol 64(2014):162–171. doi:10.1016/j.optlastec.2014.05.010

    Article  Google Scholar 

  25. Cam G, Ventzke V, Dos Santos JF, Kocak M, Jennequin G, Gonthier-Maurin P (1999) Characterization of electron beam welded aluminum alloys. Sci Technol Weld Join 4(5):317–323. doi:10.1179/136217199101537941

    Article  Google Scholar 

  26. Saida K, Song W, Nishimoto K (2005) Diode laser brazing of aluminum alloy to steels with aluminum filler metal. Sci Technol Weld Join 10(2):227–235. doi:10.1179/174329305x37060

    Article  Google Scholar 

  27. Punkari A, Weckman DC, Kerr HW (2003) Effects of magnesium content on dual beam Nd:YAG laser welding of Al–Mg alloys. Sci Technol Weld Join 8(4):269–281. doi:10.1179/136217103225005516

    Article  Google Scholar 

  28. Kwon Y, Weckman DC (2008) Double sided arc welding of AA5182 aluminum alloy sheet. Sci Technol Weld Join 13(6):485–495. doi:10.1179/174329308x271715

    Article  Google Scholar 

  29. Olsen F O (2009) Hybrid laser–arc welding, Woodhead Publishing Limited, pg. 1–44, 216–260; ISBN 978-1-84569-370-1; doi: 10.1533/9781845696528

  30. Katayama S (2013) Handbook of laser welding technologies, Woodhead Publishing Limited, pg. 3–120; ISBN 978-0-85709-264-9 doi: 10.1533/9780857098771

  31. Kah P, Jibril A, Martikainen J, Suoranta R (2012) Process possibility of welding thin aluminum alloys. Int J Mech Mater Eng (IJMME) 7(3):232–242

    Google Scholar 

  32. Xiao R, Zhang X (2014) Problems and issues in laser beam welding of aluminum–lithium alloys. J Manuf Process 16(2014):166–175. doi:10.1016/j.jmapro.2013.10.005

    Article  Google Scholar 

  33. Bentor Yinon: Periodic table of aluminum; URL: http://www.chemicalelements.com/elements/al.html accessed on 28th May, 2015

  34. Udomphol T (2007) Aluminium and its alloys, Lecture 2 by Tapany Udomphol, Suranaree University of Technology

  35. Cobden R, Banbury A: Aluminium: Physical Properties, Characteristics and Alloys, Training in aluminium application technologies (TALAT), Basic Level-Lecture 1501, prepared by Ron Cobden, Alcan, Banbury, pg. 1–60; URL: http://www.slideshare.net/corematerials/talat-lecture-1501-properties-characteristics-and-alloys-ofaluminium

  36. Hatch J E (1984) Aluminium Properties and Physical Metallurgy edited by John E. Hatch, ASM International Pg. 1–57

  37. Enz J, Riekehr S, Ventzke V, Kashaev N (2012) Influence of the local chemical composition on the mechanical properties of laser beam welded Al-Li alloys. Phys Procedia 39(2012):51–58. doi:10.1016/j.phpro.2012.10.013

    Article  Google Scholar 

  38. Kim HR, Park YW, Lee KY (2008) Application of grey relational analysis to determine welding parameters for Nd:YAG laser GMA hybrid welding of aluminum alloy. Sci Technol Weld Join 13(4):312–317. doi:10.1179/174329307x249423

    Article  Google Scholar 

  39. Vargel C: Corrosion of Aluminium translated by Dr. Martin P. Schmidt (2004) Elsevier Ltd, ISBN: 0 08 044495 4 Pg. 1–75, doi: 10.1016/b978-008044495-6/50007-0

  40. Kim YP, Alam N, Bang HS, Bang HS (2006) Observation of hybrid (cw Nd:YAG laser + MIG) welding phenomenon in AA 5083 butt joints with different gap condition. Sci Technol Weld Join 11(3):295–307. doi:10.1179/174329306x107674

    Article  Google Scholar 

  41. Kawahito Y, Katayama S (2006) In-process monitoring and adaptive control during pulsed yag laser spot welding of aluminum alloy thin sheets. JLMN-J Laser Micro/Nanoengineering 1(1):33–38. doi:10.2961/jlmn.2006.01.0007

    Article  Google Scholar 

  42. De Bono P (2011) QCOALA- Quality Control of Aluminum Laser-welded Assemblies, PDB/gdp/068DR.11, URL: www.qcoala.eu, accessed 30th May, 2015

  43. Wanjara P, Brochu M (2010) Characterization of electron beam welded AA2024. Vacuum 85:268–282. doi:10.1016/j.vacuum.2010.06.007

    Article  Google Scholar 

  44. Westermann I, Pedersen KO, Furu T, Børvik T, Hopperstad OS (2014) Effects of particles and solutes on strength, work-hardening and ductile fracture of aluminum alloys. Mech Mater 79(2014):58–72. doi:10.1016/j.mechmat.2014.08.006

    Article  Google Scholar 

  45. Zhao P-Z, Liu J, Chi Z-D (2014) Effect of Si content on laser welding performance of Al − Mn − Mg alloy. Trans Nonferrous Metals Soc China 24(2014):2208–2213. doi:10.1016/s1003-6326(14)63334-3

    Article  Google Scholar 

  46. Von Witzendorff P, Kaierle S, Suttmann O, Overmeyer L (2015) In situ observation of solidification conditions in pulsed laser welding of AL6082 aluminum alloys to evaluate their impact on hot cracking susceptibility. Metall Mater Trans A 46A:1678–1688. doi:10.1007/s11661-015-2749-z

    Article  Google Scholar 

  47. Svensson L E, Karlsson L and Soder R (2014) Welding enabling light weight design of heavy vehicle chassis, Science and Technology of Welding and Joining, (SPECIAL ISSUE ARTICLE) 2014, Vol. 000, No. 000, pp. 1–10; doi: 10.1179/1362171814y.0000000269

  48. Lee CH, Kim SW, Yoon EP (2000) Electron beam welding characteristics of high strength aluminum alloys for express train applications. Sci Technol Weld Join 5(5):277–283. doi:10.1179/136217100101538326

    Article  Google Scholar 

  49. Avilov VV, Gumenyuk A, Lammers M, Rethmeier M (2012) PA position full penetration high power laser beam welding of up to 30 mm thick AlMg3 plates using electromagnetic weld pool support. Sci Technol Weld Join 17(2):128–133. doi:10.1179/1362171811y.0000000085

    Article  Google Scholar 

  50. Tu JF, Paleocrassas AG (2011) Fatigue crack fusion in thin-sheet aluminum alloys AA7075-T6 using low-speed fiber laser welding. J Mater Process Technol 211(2011):95–102. doi:10.1016/j.jmatprotec.2010.09.001

    Article  Google Scholar 

  51. Tu J F, Paleocrassas A G (2010) Low speed laser welding of aluminum alloys using single-mode fiber lasers. In: Xiaodong N (ed) Engineering » electrical and electronic engineering » "Laser welding". North Carolina State University, USA, pp. 3–76 doi: 10.5772/9857

  52. Lumley R (2011) Fundamentals of aluminium metallurgy-Production, processing and applications edited by Roger Lumley, Woodhead Publishing Limited, ISBN 978-1-84569-654-2, Pg. 1–8, doi: 10.1533/9780857090256.1

  53. Mazzolani F M (2003) Aluminium Structural Design, International Centre For Mechanical Sciences, Courses and Lectures - No. 443, published by Springer-Verlag Wien New York, ISBN 978-3-211-00456-2,, Pg. 1–30, DOI: 10.1007/978-3-7091-2794-0

  54. King J F (2001) The aluminium industry, Woodhead Publishing Limited, ISBN 978-1-85573-151-6, Pg. 1–5, doi: 10.1016/b978-1-85573-151-6.50008-2

  55. Dwight J (1999) Aluminium Design and Construction, Taylor & Francis Group, ISBN 0 419 15710 7, Pg. 18–39, 77–103, doi: 10.4324/9780203028193

  56. Jacobs M H (1999) Metallurgical Background to Alloy Selection and Specifications for Wrought, Cast and Special Applications, Training in Aluminium Application Technologies (TALAT) Lecture-1255, European Aluminium Association (EAA), Pg. 1–16

  57. Muster T H, Hughes A E and Thompson G E (2009) Copper Distributions in Aluminium Alloys, Nova Science Publishers, Inc. New York, ISBN: 978-1-60741-201-4, Pg. 1–23

  58. Metson J (2011) Fundamentals of aluminium metallurgy, Production, Processing and applications edited by Rodger Lumley, Production of alumina, Pg. 23–37, doi: 10.1533/9780857090256

  59. Davies G (2003) Materials for Automobile Bodies, Butterworth-Heinemann, An imprint of Elsevier, ISBN 0 7506 5692 1, Pg. 87–90, 146–157, doi: 10.1016/b978-075065692-4/50021-2, 10.1016/b978-075065692-4/50022-4

  60. Heinen P, Wu H, Olowinsky A, Gillner A (2014) Helium-tight laser beam welding of aluminum with brillant laser beam radiation, 8th International Conference on Photonic Technologies LANE 2014. Phys Procedia 56(2014):554–565. doi:10.1016/j.phpro.2014.08.043

    Article  Google Scholar 

  61. Dittrich D, Standfuss J, Liebscher J, Brenner B, Beyer E (2011) Laser beam welding of hard to weld al alloys for a regional aircraft fuselage design—first results. Phys Procedia 12(2011):113–122. doi:10.1016/j.phpro.2011.03.015

    Article  Google Scholar 

  62. Sierra G, Peyre P, Deschaux-Beaume F, Stuart D, Fras G (2007) Steel to aluminum key-hole laser welding. Mater Sci Eng A 447(2007):197–208. doi:10.1016/j.msea.2006.10.106

    Article  Google Scholar 

  63. Zhu J, Lin L, Zhu L (2005) CO2 and diode laser welding of AZ31 magnesium alloy. Appl Surf Sci 247(2005):300–306. doi:10.1016/j.apsusc.2005.01.162

    Article  Google Scholar 

  64. Mathieu A, Shabadi R, Deschamps A, Sueryc M, Matte S, Grevey D, Cicala E (2007) Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire). Optics Laser Technol 39(2007):652–661. doi:10.1016/j.optlastec.2005.08.014

    Article  Google Scholar 

  65. Scherm F, Bezold J, Glatzel U (2012) Laser welding of Mg alloy MgAl3Zn1 (AZ31) to Al alloy AlMg3 (AA5754) using ZnAl filler material. Sci Technol Weld Join 17(5):364–367. doi:10.1179/136217112x13333824902080

    Article  Google Scholar 

  66. Badini C, Pavese M, Fino P, Biamino S (2009) Laser beam welding of dissimilar aluminum alloys of 2000 and 7000 series: effect of post welding thermal treatments on T joint strength. Sci Technol Weld Join 14(6):484–492. doi:10.1179/136217108x372559

    Article  Google Scholar 

  67. Laukant H, Wallmann C, Muller M, Korte M, Stirn B, Haldenwanger HG, Glatzel U (2005) Fluxless laser beam joining of aluminum with zinc coated steel. Sci Technol Weld Join 10(2):219–226. doi:10.1179/174329305x37051

    Article  Google Scholar 

  68. Tomashchuk I, Sallamand P, Cicala E, Peyre P, Grevey D (2015) Direct keyhole laser welding of aluminum alloy AA5754 to titaniumalloy Ti6Al4V. J Mater Process Technol 217(2015):96–104. doi:10.1016/j.jmatprotec.2014.10.025

    Article  Google Scholar 

  69. Huang D, McClure JC, Nunes AC (1997) Gas contamination during plasma welding in AI-Li alloy 2195. Sci Technol Weld Join 2(5):209–211. doi:10.1179/stw.1997.2.5.209

    Article  Google Scholar 

  70. The aluminium association: Product Market, URL: http://www.aluminum.org/ accessed 22nd May, 2015

  71. EAI: Aluminium alloys in aviation: URL: http://www.experimentalaircraft.info/articles/aircraft-building-8.php accessed 22nd May, 2015

  72. Nair BS, Phanikumar G, Rao K. P and Sinha P. P. (2007): Improvement of mechanical properties of gas tungsten arc and electron beam welded AA2219 (Al–6 wt-%Cu) alloy, Science and Technology of Welding and Joining, (ORIGINAL RESEARCH PAPER) 2007, Vol. 12, No. 7, pp.579-585; DOI: 10.1179/174329307x227210

  73. Weld guru: Guide to laser welding, URL: http://www.weldguru.com/Laser-Welding.html accessed on 20th May, 2015

  74. Zhao H, White DR, DebRoy T (1999) Current issues and problems in laser welding of automotive aluminum alloys. Int Mater Rev 44(6):238–266. doi:10.1179/095066099101528298

    Article  Google Scholar 

  75. Duley W W (1983) Laser Processing and Analysis of Materials, PLENUM PRESS, pg. 1–44; ISBN 978-1-4757-0195-1 doi: 10.1007/978-1-4757-0193-7

  76. Kocak M, dos Santos J, Riekehr S (2001) Trends in laser beam welding technology and fracture assessment of weld joints. Sci Technol Weld Join 6(6):347–350. doi:10.1179/stw.2001.6.6.347

    Article  Google Scholar 

  77. Dawes C (1992) Laser welding- A practical guide, Woodhead Publishing Limited, pg. 1–28; ISBN 978–1 -85573-034-2; doi: 10.1533/9781845698843

  78. Yilbas B S, Akhtar S, Shuja S Z (2013) Laser Forming and Welding Processes, Springer International Publishing, pg.1-4; ISBN 978-3-319-00980-3: doi: 10.1007/978-3-319-00981-0

  79. Lin L (2000) The advances and characteristics of high-power diode laser materials processing. Opt Lasers Eng 34(2000):231–253. doi:10.1016/s0143-8166(00)00066-x

    Google Scholar 

  80. Olsen F O and Alting L (1995) Pulsed Laser Materials Processing, ND-YAG versus CO, Lasers, Annals of the ClRP Vol. 44/1/1995, pp. 141–145; doi: 10.1016/s0007-8506(07)62293-8

  81. Walsh CA (2002) Laser welding—literature review, materials science and metallurgy department. University of Cambridge, England

    Google Scholar 

  82. Duley W W (1976) C02 Lasers Effects and Applications, Academic Press, pg. 1–15; ISBN 0-12-223350-6; doi: 10.1016/b978-0-12-223350-0.50007-9

  83. Koechner W (2006) Solid-State Laser Engineering, Springer Science, pg. 1–10; ISBN-13: 978-0387-29094-2; doi: 10.1007/0-387-29338-8_1

  84. Na X (2010) Laser Welding, Published by Sciyo, pg. 1–10, 47–60; ISBN 978-953-307-129-9; doi: 10.5772/265

  85. Mrna L, Sarbort M, Rerucha S, Jedlicka P (2013) Correlation between the keyhole depth and the frequency characteristics of light emissions in laser welding, Lasers in Manufacturing Conference 2013. Phys Procedia 41(2013):469–477. doi:10.1016/j.phpro.2013.03.103

    Article  Google Scholar 

  86. Ha J, Huh H (2013) Failure characterization of laser welds under combined loading conditions. Int J Mech Sci 69(2013):40–58. doi:10.1016/j.ijmecsci.2013.01.022

    Article  Google Scholar 

  87. Li Z, Gobbi SL (1997) Laser welding for lightweight structures. J Mater Process Technol 70(1997):I37–144. doi:10.1016/s0924-0136(97)02906-3

    Google Scholar 

  88. Li S, Chen G, Zhang M, Zhou Y, Zhang Y (2014) Dynamic keyhole profile during high-power deep-penetration laser welding. J Mater Process Technol 214(2014):565–570. doi:10.1016/j.jmatprotec.2013.10.019

    Article  Google Scholar 

  89. Industrial laser solutions: Laser development at Volvo published on 03/01/2013; URL: http://www.industrial-lasers.com/articles/print/volume-28/issue-2/features/laser-development-at-volvo.html accessed on 4th June, 2015

  90. Industrial laser solutions: Body-in-white diode laser brazing published on 09/01/2011; URL: http://www.industrial-lasers.com/articles/print/volume-26/issue-5/features/body-in-white-diode-laser-brazing.html accessed on 4th June, 2015

  91. Cui L, Li XY, He DY, Chen L, Gong SL (2013) Study on microtexture of laser welded 5A90 aluminum–lithium alloys using electron backscattered diffraction. Sci Technol Weld Join 18(3):204–209. doi:10.1179/1362171812y.0000000092

    Article  Google Scholar 

  92. Tawfiq TA, Taha ZA, Hussein FI, Shehab AA (2012) Spot welding of dissimilar metals using an automated Nd:YAG laser system. Iraqi J Laser Part A 11:1–5

    Google Scholar 

  93. Möller F, Thomy C (2013) Interaction effects between laser beam and plasma arc in hybrid welding of aluminum, Lasers in Manufacturing Conference 2013. Phys Procedia 41(2013):81–89. doi:10.1016/j.phpro.2013.03.054

    Article  Google Scholar 

  94. Masoumi M, Marashi SPH, Pouranvari M, Sabbaghzadeh J, Torkamany MJ (2009) Assessment of the effect of laser spot welding parameters on the joint quality using Taguchi Method, METAL 2009. Hradec Moravicí 5:19–21

    Google Scholar 

  95. Aalderink BJ, Pathiraj B, Aarts RGKM (2009) Seam gap bridging of laser based processes for the welding of aluminum sheets for industrial applications. Int J Adv Manuf Technol. doi:10.1007/s00170-009-2270-x

    Google Scholar 

  96. Katayama S, Kawahito Y, Mizutani M (2012) Latest progress in performance and understanding of laser Welding. Phys Procedia 39(2012):8–16. doi:10.1016/j.phpro.2012.10.008

    Article  Google Scholar 

  97. Katayama S, Kawahito Y, Mizutani M (2010) Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects, LANE 2010. Phys Procedia 5(2010):9–17. doi:10.1016/j.phpro.2010.08.024

    Article  Google Scholar 

  98. Tao W, Li LQ, Chen YB, Wu L (2008) Joint strength and failure mechanism of laser spot weld of mild steel sheets under lap shear loading. Sci Technol Weld Join 13(8):754–759. doi:10.1179/136217108x338917

    Article  Google Scholar 

  99. Kessler B (2013) Fiber laser welding in the car body shop - laser seam stepper versus remote laser welding. J KWJS 31(4):17–22. doi:10.5781/KWJS.2013.31.4.17

    Google Scholar 

  100. Huber S, Glasschroeder J, Zaeh MF (2011) Analysis of the metal vapour during laser beam welding. Phys Procedia 12(2011):712–719. doi:10.1016/j.phpro.2011.03.089

    Article  Google Scholar 

  101. Mahrle A, Rose S, Schnick M, Beyer E, Fussel U (2013) Stabilisation of plasma welding arcs by low power laser beams. Sci Technol Weld Join 18(4):323–328. doi:10.1179/1362171813y.0000000109

    Article  Google Scholar 

  102. Schweier M, Heins JF, Haubold MW, Zaeh MF (2013) Spatter formation in laser welding with beam oscillation, Lasers in Manufacturing Conference 2013. Phys Procedia 41(2013):20–30. doi:10.1016/j.phpro.2013.03.047

    Article  Google Scholar 

  103. Tzeng Y-F (2000) Parametric analysis of the pulsed Nd:YAG laser seam-welding process. J Mater Process Technol 102(2000):40–47. doi:10.1016/s0924-0136(00)00447-7

    Article  Google Scholar 

  104. Blecher JJ, Galbraith CM, Van Vlack C, Palmer TA, Fraser JM, Webster PJL, DebRoy T (2014) Real time monitoring of laser beam welding keyhole depth by laser interferometry. Sci Technol Weld Join 19(7):560–564. doi:10.1179/1362171814y.0000000225

    Article  Google Scholar 

  105. De A, DebRoy T (2011) A perspective on residual stresses in welding. Sci Technol Weld Join 16(3):204–208. doi:10.1179/136217111x12978476537783

    Article  Google Scholar 

  106. Assuncao E, Williams S, Yapp D (2012) Interaction time and beam diameter effects on the conduction mode limit. Opt Lasers Eng 50(2012):823–828. doi:10.1016/j.optlaseng.2012.02.001

    Article  Google Scholar 

  107. Okon P, Dearden G, Watkins K, Sharp M, French P (2002) Laser Welding of Aluminum Alloy 5083, 21st International congress on Applications of Lasers and electro-optics, Scottsdale, October 14–17, 2002 (ICALEO 2002) ISBN: 0-912035-72-2

  108. Chen YB, Lei ZL, Li LQ, Wu L (2006) Experimental study on welding characteristics of CO2 laser TIG hybrid welding process. Sci Technol Weld Joining 11(4):403–411. doi:10.1179/174329306x129535

    Article  Google Scholar 

  109. Katayama S, Mizutani M, Matsunawa A (1997) Modeling of melting and solidification behavior during laser spot welding. Sci Technol Weld Join 2(1):1–9. doi:10.1179/stw.1997.2.1.1

    Article  Google Scholar 

  110. Kawahito Y, Matsumoto N, Abe Y, Katayama S (2011) Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy. J Mater Process Technol 211(2011):1563–1568. doi:10.1016/j.jmatprotec.2011.04.002

    Article  Google Scholar 

  111. Zhang MJ, Chen GY, Zhou Y, Li SC, Deng H (2013) Observation of spatter formation mechanisms in high-power fiber laser welding of thick plate. Appl Surf Sci 280(2013):868–875. doi:10.1016/j.apsusc.2013.05.081

    Article  Google Scholar 

  112. Sokolov M, Salminen A (2014) Methods for improving laser beam welding efficiency, 8th International Conference on Photonic Technologies LANE 2014. Phys Procedia 56(2014):450–457. doi:10.1016/j.phpro.2014.08.148

    Article  Google Scholar 

  113. Tsukamoto S (2011) High speed imaging technique Part 2—high speed imaging of power beam welding phenomena. Sci Technol Weld Join 16(1):44–55. doi:10.1179/136217110x12785889549949

    Article  Google Scholar 

  114. Zhao CX, Kwakernaak C, Pan Y, Richardson IM, Saldi Z, Kenjeres S, Kleijn CR (2010) The effect of oxygen on transitional Marangoni flow in laser spot welding. Acta Mater 58(2010):6345–6357. doi:10.1016/j.actamat.2010.07.056

    Article  Google Scholar 

  115. Youhei A, Yousuke K, Hiroshi N, Koji N, Masami M, Seiji K (2014) Effect of reduced pressure atmosphere on weld geometry in partial penetration laser welding of stainless steel and aluminum alloy with high power and high brightness laser. Sci Technol Weld Join 19(4):324–332. doi:10.1179/1362171813y.0000000182

    Article  Google Scholar 

  116. Karkhin VA, Plochikhine VV, Bergmann HW (2002) Solution of inverse heat conduction problem for determining heat input, weld shape, and grain structure during laser welding. Sci Technol Weld Join 7(4):224–231. doi:10.1179/136217102225004202

    Article  Google Scholar 

  117. Chen YB, Miao YG, Li LQ, Wu L (2008) Arc characteristics of laser-TIG double-side welding. Sci Technol Weld Join 13(5):438–444. doi:10.1179/174329308x341861

    Article  Google Scholar 

  118. Kawahito Y, Matsumoto N, Mizutani M, Katayama S (2008) Characterization of plasma induced during high power fiber laser welding of stainless steel. Sci Technol Weld Join 13(8):744–748. doi:10.1179/136217108x329313

    Article  Google Scholar 

  119. Chen YB, Zhao YB, Lei ZL, Li LQ (2012) Effects of laser induced metal vapor on arc plasma during laser arc double sided welding of 5A06 aluminum alloy. Sci Technol Weld Join 17(1):69–76. doi:10.1179/1362171811y.0000000078

    Article  Google Scholar 

  120. Frompo: Principes van geleidings- en dieplassen; URL: http://image.frompo.com/131a24bc1ea7664618c7f6fedfd67066 accessed on 10th June, 2015

  121. He X, DebRoy T (2003) Probing temperature during laser spot welding from vapor composition and modeling. J Appl Phys 94(10):6949–6958. doi:10.1063/1.1622118

    Article  Google Scholar 

  122. Mujibur Rahman ABM, Kumar S, Gerson AR (2007) Galvanic corrosion of laser weldments of AA6061 aluminum alloy. Corros Sci 49(2007):4339–4351. doi:10.1016/j.corsci.2007.04.010

    Article  Google Scholar 

  123. Mattei S, Grevey D, Mathieu A, Kirchner L (2009) Using infrared thermography in order to compare laser and hybrid (laser + MIG) welding processes. Optics Laser Technol 41(2009):665–670. doi:10.1016/j.optlastec.2009.02.005

    Article  Google Scholar 

  124. Haboudou A, Peyre P, Vannes AB, Peix G (2003) Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminum alloys. Mater Sci Eng A 363(2003):40–52. doi:10.1016/s0921-5093(03)00637-3

    Article  Google Scholar 

  125. Stritt P, Hagenlocher C, Kizler C, Weber R, Rüttimann C, Graf T (2014) Laser spot welding of copper-aluminum joints using a pulsed dual wavelength laser at 532 and 1064 nm, 8th International Conference on Photonic Technologies LANE 2014. Phys Procedia 56:759–767. doi:10.1016/j.phpro.2014.08.083

    Article  Google Scholar 

  126. Curcio F, Daurelio G, Memola Capece Minutolo F, Caiazzo F (2006) On the welding of different materials by diode laser. J Mater Process Technol 175(2006):83–89. doi:10.1016/j.jmatprotec.2005.04.026

    Article  Google Scholar 

  127. DILAS-The diode laser company: URL: http://www.dilas.com/pages/products.php accessed on 2nd June, 2015

  128. Quintino L, Costa A, Miranda R, Yapp D, Kumar V, Kong CJ (2007) Welding with high power fiber lasers—a preliminary study. Mater Des 28(2007):1231–1237. doi:10.1016/j.matdes.2006.01.009

    Article  Google Scholar 

  129. Wang XJ, Lu FG, Wang HP, Cui HC, Tang XH, Wu YX (2015) Experimental and numerical analysis of solidification cracking behavior in fiber laser welding of 6013 aluminum alloy. Sci Technol Weld Join 20(1):58–67. doi:10.1179/1362171814y.0000000254

    Article  Google Scholar 

  130. Oliveira AC, Siqueira RHM, Riva R, Lima MSF (2015) One-sided laser beam welding of autogenous T-joints for 6013-T4 aluminum alloy. Mater Des 65(2015):726–736. doi:10.1016/j.matdes.2014.09.055

    Article  Google Scholar 

  131. Fu B, Qin G, Meng X, Ji Y, Zou Y, Lei Z (2014) Materials Science & Engineering A. Mater Sci Eng 617(2014):1–11. doi:10.1016/j.msea.2014.08.038

    Article  Google Scholar 

  132. Paleocrassas AG, Tu JF (2010) Inherent instability investigation for low speed laser welding of aluminum using a single-mode fiber laser. J Mater Process Technol 210(2010):1411–1418. doi:10.1016/j.jmatprotec.2010.04.002

    Article  Google Scholar 

  133. Wang T, Yang Z, Chen Y, Li L, Jiang Z, Zhang Y (2013) Double-sided fiber laser beam welding process of T-joints for aluminum aircraft fuselage panels: filler wire melting behavior, process stability, and their effects on porosity defects. Optics Laser Technol 52(2013):1–9. doi:10.1016/j.optlastec.2013.04.003

    Google Scholar 

  134. Tusek J, Suban M (1999) Hybrid welding with arc and laser beam. Sci Technol Weld Join 4(5):308–311. doi:10.1179/136217199101537923

    Article  Google Scholar 

  135. Gao M, Zeng X, Hu Q (2007) Effects of gas shielding parameters on weld penetration of CO2 laser-TIG hybrid welding. J Mater Process Technol 184(2007):177–183. doi:10.1016/j.jmatprotec.2006.11.019

    Google Scholar 

  136. Casalino G, Campanelli SL, Dal Maso U, Ludovico AD (2013) Arc leading versus laser leading in the hybrid welding of aluminum alloy using a fiber laser, 8th CIRP Conference on Intelligent Computation in Manufacturing Engineering. Proc CIRP 12(2013):151–156. doi:10.1016/j.procir.2013.09.027

    Article  Google Scholar 

  137. Schultz V, Seefeld T, Vollertsen F (2014) Gap bridging ability in laser beam welding of thin aluminum sheets, 8th International Conference on Photonic Technologies LANE 2014. Phys Procedia 56(2014):545–553. doi:10.1016/j.phpro.2014.08.037

    Article  Google Scholar 

  138. Wu S, Ri X (2015) Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium. Optics Laser Technol 67(2015):169–175. doi:10.1016/j.optlastec.2014.10.018

    Article  Google Scholar 

  139. Le Guen E, Fabbro R, Carin M, Coste F, Le Masson P (2011) Analysis of hybrid Nd:YAG laser-MAG arc welding processes. Optics Laser Technol 43(2011):1155–1166. doi:10.1016/j.optlastec.2011.03.002

    Article  Google Scholar 

  140. Ascari A, Fortunato A, Orazi L, Campana G (2012) The influence of process parameters on porosity formation in hybrid LASER-GMA welding of AA6082 aluminum alloy. Optics Laser Technol 44(2012):1485–1490. doi:10.1016/j.optlastec.2011.12.014

    Article  Google Scholar 

  141. Zhang C, Gao M, Li G, Chen C, Zeng XY (2013) Strength improving mechanism of laser arc hybrid welding of wrought AA 2219 aluminum alloy using AlMg5 wire. Sci Technol Weld Join 18(8):703–710. doi:10.1179/1362171813y.0000000153

    Article  Google Scholar 

  142. Liu LM, Yuan ST, Li CB (2012) Effect of relative location of laser beam and TIG arc in different hybrid welding modes. Sci Technol Weld Join 17(6):441–446. doi:10.1179/1362171812y.0000000033

    Google Scholar 

  143. Yan J, Zeng X, Gao M, Lai J, Lin T (2009) Effect of welding wires on microstructure and mechanical properties of 2A12 aluminum alloy in CO2 laser-MIG hybrid welding. Appl Surf Sci 255(2009):7307–7313. doi:10.1016/j.apsusc.2009.03.088

    Article  Google Scholar 

  144. Casalino G (2007) Statistical analysis of MIG-laser CO2 hybrid welding of Al–Mg alloy. J Mater Process Technol 191(2007):106–110. doi:10.1016/j.jmatprotec.2007.03.065

    Article  Google Scholar 

  145. Zhang D-Q, Li J, Joo HG, Lee KY (2009) Corrosion properties of Nd:YAG laser–GMA hybrid welded AA6061 Al alloy and its microstructure. Corros Sci 51(2009):1399–1404. doi:10.1016/j.corsci.2009.03.030

    Article  Google Scholar 

  146. He C, Huang C, Liu Y, Li J, Wang Q (2015) Effects of mechanical heterogeneity on the tensile and fatigue behaviors in a laser-arc hybrid welded aluminum alloy joint. Mater Des 65(2015):289–296. doi:10.1016/j.matdes.2014.08.050

    Article  Google Scholar 

  147. Ola OT, Doern FE (2015) Fusion weldability studies in aerospace AA7075-T651 using high-power continuous wave laser beam techniques. Mater Des 77(2015):50–58. doi:10.1016/j.matdes.2015.03.064

    Article  Google Scholar 

  148. Tong H, Ueyama T, Nakata K, Ushio M (2003) High speed welding of aluminum alloy sheets using laser assisted alternating current pulsed metal inert gas process. Sci Technol Weld Join 8(3):229–234. doi:10.1179/136217103225010853

    Article  Google Scholar 

  149. Yan-Bin C, Miao Y-G, Li-Qun L, Wu L (2009) Joint performance of laser-TIG double-side welded 5A06 aluminum alloy. Trans Nonferrous Metal Soc China 19(2009):26–31. doi:10.1016/s1003-6326(08)60223-x

    Google Scholar 

  150. Wu SC, Yu C, Zhang WH, Fu YN, Helfen L (2015) Porosity induced fatigue damage of laser welded 7075-T6 joints investigated via synchrotron X-ray microtomography. Sci Technol Weld Join 20(1):11–19. doi:10.1179/1362171814y.0000000249

    Article  Google Scholar 

  151. Yang ZB, Tao W, Li LQ, Chen YB, Li FZ, Zhang YL (2012) Double-sided laser beam welded T-joints for aluminum aircraft fuselage panels: Process, microstructure, and mechanical properties. Mater Des 33(2012):652–658. doi:10.1016/j.matdes.2011.07.059

    Article  Google Scholar 

  152. Schneider A, Avilov V, Gumenyuk A, Rethmeier M (2013) Laser beam welding of aluminum alloys under the influence of an electromagnetic field, Lasers in Manufacturing Conference 2013. Phys Procedia 41(2013):4–11. doi:10.1016/j.phpro.2013.03.045

    Article  Google Scholar 

  153. Gatzen M, Tang Z, Vollertsen F (2011) Effect of electromagnetic Stirring on the Element Distribution in Laser Beam Welding of Aluminum with Filler Wire, LiM 2011. Phys Procedia 12(2011):56–65. doi:10.1016/j.phpro.2011.03.008

    Article  Google Scholar 

  154. Ancona A, Sibillano T, Tricarico L, Spina R, Lugara PM, Basile G, Schiavone S (2005) Comparison of two different nozzles for laser beam welding of AA5083 aluminum alloy. J Mater Process Technol 164–165(2005):971–977. doi:10.1016/j.jmatprotec.2005.02.048

    Article  Google Scholar 

  155. Ancona A, Lugara PM, Sorgente D, Tricarico L (2007) Mechanical characterization of CO2 laser beam butt welds of AA5083. J Mater Process Technol 191(2007):381–384. doi:10.1016/j.jmatprotec.2007.03.048

    Article  Google Scholar 

  156. Cui L, Li X, He D, Chen L, Gong S (2012) Effect of Nd:YAG laser welding on microstructure and hardness of an Al–Li based alloy. Mater Character 71(2012):95–102. doi:10.1016/j.matchar.2012.06.011

    Article  Google Scholar 

  157. Pastor M, Zhao H, Debroy T (2009) Pore formation during continuous wave Nd:YAG laser welding of aluminum for automotive applications. Weld Int 15(4):275–281. doi:10.1080/09507110109549355

    Article  Google Scholar 

  158. Malek Ghaini F, Sheikhi M, Torkamany MJ, Sabbaghzadeh J (2009) The relation between liquation and solidification cracks in pulsed laser welding of 2024 aluminum alloy. Mater Sci Eng A 519(2009):167–171. doi:10.1016/j.msea.2009.04.056

    Article  Google Scholar 

  159. de Mota Siqueira RH, de Capella Oliveira A, Riva R, Abdalla AJ, Baptista CARP, de Fernandes Lima MS (2014) J Braz Soc Mech Sci Eng. doi:10.1007/s40430-014-0175-6, Technical paper

    Google Scholar 

  160. Sanchez-Amaya JM, Delgado T, Gonzalez-Rovira L, Botana FJ (2009) Laser welding of aluminum alloys 5083 and 6082 under conduction regime. Appl Surf Sci 255(2009):9512–9521. doi:10.1016/j.apsusc.2009.07.081

    Article  Google Scholar 

  161. Zain-ul-abdein M, Nelias D, Jullien J-F, Deloison D (2010) Experimental investigation and finite element simulation of laser beam welding induced residual stresses and distortions in thin sheets of AA 6056-T4. Mater Sci Eng A 527(2010):3025–3039. doi:10.1016/j.msea.2010.01.054

    Article  Google Scholar 

  162. Liu H, Shang DG, Guo Z-K, Zhao YG, Liu JZ (2014) Fatigue crack growth property of laser beam welded 6156 aluminum alloy. Fatigue Fract Eng Mater Struct 37:937–944. doi:10.1111/ffe.12176

    Article  Google Scholar 

  163. Hu B, Richardson IM (2007) Microstructure and mechanical properties of AA7075(T6) hybrid laser/GMA welds. Mater Sci Eng A 459(2007):94–100. doi:10.1016/j.msea.2006.12.094

    Article  Google Scholar 

  164. Sibillano T, Ancona A, Berardi V, Schingaro E, Basile G, Lugara PM (2006) A study of the shielding gas influence on the laser beam welding of AA5083 aluminum alloys by in-process spectroscopic investigation. Opt Lasers Eng 44(2006):1039–1051. doi:10.1016/j.optlaseng.2005.09.002

    Article  Google Scholar 

  165. Zhao YB, Lei ZL, Chen YB, Tao W (2011) A comparative study of laser-arc double-sided welding and double-sided arc welding of 6 mm 5A06 aluminum alloy. Mater Des 32(2011):2165–2171. doi:10.1016/j.matdes.2010.11.041

    Article  Google Scholar 

  166. Eibl M, Sonsino CM, Kaufmann H, Zhang G (2003) Fatigue assessment of laser welded thin sheet aluminum. Int J Fatigue 25(2003):719–731. doi:10.1016/s0142-1123(03)00053-7

    Article  Google Scholar 

  167. Guo-liang Q, Wang G-G, Zeng-da Z (2012) Effects of activating flux on CO2 laser welding process of 6013 Al alloy. Trans Nonferrous Metals Soc China 22(2012):23–29. doi:10.1016/s1003-6326(11)61134-5

    Google Scholar 

  168. KahP, Hiltunen E. and Martikainen J (2010) Investigation of Hot Cracking in the Welding of Aluminum Alloys (6005 & 6082), 63rd Annual Assembly & International Conference of the International Institute of Welding 11–17 July 2010, Istanbul, Turkey, pp. 373–380

  169. Chen XL, Yan HG, Chen JH, Su B, Yu ZH (2013) Effects of grain size and precipitation on liquation cracking of AZ61 magnesium alloy laser welding joints. Sci Technol Weld Join 18(6):458–465. doi:10.1179/1362171813y.0000000117

    Article  Google Scholar 

  170. Marya M, Edwards GR (2002) Influence of laser beam variables on AZ91D weld fusion zone microstructure. Sci Technol Weld Join 7(5):286–293

    Google Scholar 

  171. Reddy GM, Gokhale AA, Prasad KS, Prasad Rao K (1998) Chill zone formation in Al-Li alloy welds. Sci Technol Weld Join 3(4):208–212. doi:10.1179/stw.1998.3.4.208

    Article  Google Scholar 

  172. Avilov V, Schneider A, Gumenyuk A, Rethmeier M (2012) Electromagnetic Control of the Weld Pool Dynamics in Partial Penetration Laser Beam Welding of Aluminum Alloys, Federal Institute for Materials Research and Testing (BAM), 12205 Berlin, Germany, p 233–236

  173. Cicala E, Duffet G, Grevey D (2008) Optimization Of The Laser Welding of Aluminum Alloys used in Aeronautics, Nonconventional Technologies Review – no. 2/2008, pp. 9–16

  174. Taban E, Kaluc E (2011) Welding behavior of Duplex and Superduplex stainless steels using Laser and Plasma Arc Welding processes. Welding World 55(7–8):48–57. doi:10.1007/bf03321307

    Article  Google Scholar 

  175. El T, Deleu E, Dhooge A, Kaluc E (2009) Laser welding of modified 12% Cr stainless steel: Strength, fatigue, toughness, microstructure and corrosion properties. Mater Des 30(2009):1193–1200. doi:10.1016/j.matdes.2008.06.030

    Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge Prof. Dr. Erdinc Kaluc for valuable discussions and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emel Taban.

Additional information

Recommended for publication by Commission IV - Power Beam Processes

Appendix

Appendix

Table 14 Chemical composition of laser welded non-heat treatable Al alloys
Table 15 Chemical composition of laser welded heat treatable Al alloys
Table 16 Chemical composition of laser welded cast Al alloys
Table 17 Chemical composition of filler metals used in laser welding of Al alloys

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oladimeji, O.O., Taban, E. Trend and innovations in laser beam welding of wrought aluminum alloys. Weld World 60, 415–457 (2016). https://doi.org/10.1007/s40194-016-0317-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-016-0317-9

Keywords (IIW Thesaurus)

Navigation