Skip to main content
Log in

Blockchain-Based Security Access Control System for Sharing Squeeze Casting Process Database

  • Thematic Section: Harnessing the Power of Materials Data
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

Presently, material databases construction is a trending topic. We propose to adopt a collaborative and shared model to accelerate building a squeeze casting process database. To achieve co-construction and sharing of the databases, ensure the reliability of data, database operation security, and on-demand access control of data, a secure access control system has been established for squeeze casting process databases based on blockchain technology. The system saves the database data on a local server, implements automatic access control for users through smart contracts, stores user operation records on the blockchain, and ensures that the data is modifiable while the user operation records cannot be tampered with. Because of the inadequate security of traditional transaction processes where data is transmitted as source data, we use asymmetric encryption algorithm to encrypt the source data and transmit ciphertext to improve data sharing security. The system has been developed and implemented, and the security verification experiment has demonstrated the feasibility and effectiveness of the design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ghomashchi MR, Vikhrov A (2000) Squeeze casting: an overview. J Mater Process Technol 101:1–9. https://doi.org/10.1016/S0924-0136(99)00291-5

    Article  Google Scholar 

  2. Mourad A-HI, Christy JV, Krishnan PK, Mozumder MS (2023) Production of novel recycled hybrid metal matrix composites using optimized stir squeeze casting technique. J Manuf Processes 88:45–58. https://doi.org/10.1016/j.jmapro.2023.01.040

    Article  Google Scholar 

  3. Deng J, Xie B, You D et al (2022) Process parameters design of squeeze casting through an improved KNN algorithm and existing data. J Manuf Processes 84:1320–1330. https://doi.org/10.1016/j.jmapro.2022.10.074

    Article  Google Scholar 

  4. Deng J, Xie B, You D, Huang H (2023) Review of design of process parameters for squeeze casting. Chin J Mech Eng 36:1–14. https://doi.org/10.1186/s10033-023-00979-2

    Article  Google Scholar 

  5. Li J, Sun Y, Wang Y, Sun J (2022) Optimization of squeeze casting process of gearbox cover based on FEM and Box-Behnken design. Int J Adv Manuf Technol 118:3421–3430. https://doi.org/10.1007/s00170-021-08099-8

    Article  Google Scholar 

  6. Fr S, J A, Chanakyan C, (2023) Optimization of squeeze casting process parameters on mechanical properties of SiCp reinforced LM25 composites through Taguchi technique. Mater Res Express 10:076515. https://doi.org/10.1088/2053-1591/ace75e

    Article  ADS  Google Scholar 

  7. Muthu Kamatchi R, Muraliraja R (2023) Optimization of squeeze casting process parameters for the production of Al composite reinforced with bone powder, Mater Today Proc, https://doi.org/10.1016/j.matpr.2023.02.222

  8. Azhagan MT, Mohan B (2021) Parametric optimization in squeeze casting of AA6061-Si3N4 composites using Taguchi method. J Ceram Process Res 22:470–474

    Google Scholar 

  9. Batra R, Song L, Ramprasad R (2021) Emerging materials intelligence ecosystems propelled by machine learning. Nat Rev Mater 6:655–678. https://doi.org/10.1038/s41578-020-00255-y

    Article  ADS  Google Scholar 

  10. Gjerding MN, Taghizadeh A, Rasmussen A et al (2021) Recent progress of the Computational 2D Materials Database (C2DB). 2D Mater 8:044002

    Article  CAS  Google Scholar 

  11. Marechal L, Balland P, Lindenroth L et al (2021) Toward a common framework and database of materials for soft robotics. Soft Rob 8:284–297. https://doi.org/10.1089/soro.2019.0115

    Article  Google Scholar 

  12. Rosen AS, Iyer SM, Ray D et al (2021) Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery. Matter 4:1578–1597. https://doi.org/10.1016/j.matt.2021.02.015

    Article  CAS  Google Scholar 

  13. Vergniory MG, Wieder BJ, Elcoro L, et al (2022) All topological bands of all nonmagnetic stoichiometric materials. Science 376:eabg9094. https://doi.org/10.1126/science.abg9094

  14. Huang S, Cole JM (2020) A database of battery materials auto-generated using ChemDataExtractor. Sci Data 7:260. https://doi.org/10.1038/s41597-020-00602-2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jie J, Weng M, Li S et al (2019) A new MaterialGo database and its comparison with other high-throughput electronic structure databases for their predicted energy band gaps. Sci China Technol Sci 62:1423–1430. https://doi.org/10.1007/s11431-019-9514-5

    Article  ADS  Google Scholar 

  16. Saal JE, Kirklin S, Aykol M et al (2013) Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65:1501–1509. https://doi.org/10.1007/s11837-013-0755-4

    Article  CAS  Google Scholar 

  17. Natrayan L, Senthil Kumar M (2020) An integrated artificial neural network and Taguchi approach to optimize the squeeze cast process parameters of AA6061/Al2O3/SiC/Gr hybrid composites prepared by novel encapsulation feeding technique. Mater Today Commun 25:101586. https://doi.org/10.1016/j.mtcomm.2020.101586

    Article  CAS  Google Scholar 

  18. Adithiyaa T, Chandramohan D, Sathish T (2020) Optimal prediction of process parameters by GWO-KNN in stirring-squeeze casting of AA2219 reinforced metal matrix composites. Mater Today: Proc 21:1000–1007. https://doi.org/10.1016/j.matpr.2019.10.051

    Article  CAS  Google Scholar 

  19. Panicker PG, Kuriakose S (2023) Parameter optimisation of squeeze casting process using LM 20 Alloy: numeral analysis by neural network and modified coefficient-based deer hunting optimization. Aust J Mech Eng 21:351–367. https://doi.org/10.1080/14484846.2020.1842306

    Article  Google Scholar 

  20. Horstemeyer MF, Huddleston BD, Bagheri A et al (2020) Universal material constants for MultiStage Fatigue (MSF) modeling of the Process–Structure–Property (PSP) relations of A000, 2000, 5000, and 7000 series aluminum alloys. Integr Mater Manuf Innov 9:157–180. https://doi.org/10.1007/s40192-020-00175-3

    Article  Google Scholar 

  21. Namasudra S, Deka GC, Johri P et al (2021) The revolution of blockchain: state-of-the-art and research challenges. Arch Computat Methods Eng 28:1497–1515. https://doi.org/10.1007/s11831-020-09426-0

    Article  Google Scholar 

  22. Javaid M, Haleem A, Pratap Singh R et al (2021) Blockchain technology applications for Industry 4.0: a literature-based review. Blockchain Res Appl 2:100027. https://doi.org/10.1016/j.bcra.2021.100027

    Article  Google Scholar 

  23. Zaabar B, Cheikhrouhou O, Jamil F et al (2021) HealthBlock: a secure blockchain-based healthcare data management system. Comput Networks 200:108500. https://doi.org/10.1016/j.comnet.2021.108500

    Article  Google Scholar 

  24. Zhang W, Wang Z, Li X (2023) Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis. Reliab Eng Syst Saf 229:108885. https://doi.org/10.1016/j.ress.2022.108885

    Article  Google Scholar 

  25. Li D, Hu Y, Lan M (2020) IoT device location information storage system based on blockchain. Future Gener Comput Syst 109:95–102. https://doi.org/10.1016/j.future.2020.03.025

    Article  Google Scholar 

  26. Rui H, Huan L, Yang H, YunHao Z (2020) Research on secure transmission and storage of energy IoT information based on Blockchain. Peer-to-Peer Netw Appl 13:1225–1235. https://doi.org/10.1007/s12083-019-00856-7

    Article  Google Scholar 

  27. Abunadi I, Kumar RL (2021) BSF-EHR: blockchain security framework for electronic health records of patients. Sensors 21:2865. https://doi.org/10.3390/s21082865

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Lusetti M, Salsi L, Dallatana A (2020) A blockchain based solution for the custody of digital files in forensic medicine. Forensic Sci Int: Digital Invest 35:301017. https://doi.org/10.1016/j.fsidi.2020.301017

    Article  Google Scholar 

  29. Wang W, Yang Y, Yin Z et al (2022) BSIF: blockchain-based secure, interactive, and fair mobile crowdsensing. IEEE J Sel Areas Commun 40:3452–3469. https://doi.org/10.1109/JSAC.2022.3213306

    Article  Google Scholar 

  30. Jabarulla MY, Lee H-N (2021) Blockchain-based distributed patient-centric image management system. Appl Sci 11:196. https://doi.org/10.3390/app11010196

    Article  CAS  Google Scholar 

  31. Zhang L, Peng M, Wang W et al (2021) Secure and efficient data storage and sharing scheme based on double blockchain. Comput Mater Contin 66:499–515

    Google Scholar 

  32. Ye H, Park S (2021) Reliable vehicle data storage using blockchain and IPFS. Electronics 10:1130. https://doi.org/10.3390/electronics10101130

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.cn) for English language editing.

Funding

This work was supported by the National Natural Science Fund of China [grant numbers 51965006]; Guangxi Natural Science Foundation [2018GXNSFAA050111]; and the Open Fund of National Engineering Research Center of Near-Shape Forming for Metallic Materials [grant numbers 2019001].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Liu, G. & Zeng, X. Blockchain-Based Security Access Control System for Sharing Squeeze Casting Process Database. Integr Mater Manuf Innov 13, 92–104 (2024). https://doi.org/10.1007/s40192-023-00337-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-023-00337-z

Keywords

Navigation