Skip to main content

Advertisement

Log in

Abstract

Purpose of Review

Concussion frequently results in visual symptoms, necessitating careful neuro-ophthalmic examination. Both afferent and efferent visual systems are sensitive to brain injury. The present review focuses on the pathophysiology, clinical presentations, examinations, management, and future directions regarding visual disturbances after concussion.

Recent Findings

Photophobia is common in both acute and chronic concussion. Abnormalities of accommodation, convergence, saccades, and smooth pursuits can result in blurred vision, double vision, and difficulty with near work. Vision-based testing is crucial in the detection of concussion. Retinal nerve fiber layer thickness measurement may elucidate the risk of structural and functional sequelae. Patients presented with visual field loss or cranial neuropathies require evaluation for structural lesions.

Summary

Proper neuro-ophthalmic examination is instrumental in clinical decision-making for the diagnosis and management of concussion, as well as directing future investigations on preventing long-term complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TBI:

Traumatic brain injury

IPRGC:

Intrinsically photosensitive retinal ganglion cell

CI:

Convergence insufficiency

NPC:

Near point of convergence

RAN:

Rapid automized naming tasks

KDT:

King-Devick test

MULES:

Mobile Universal Lexicon Evaluation System

OCT:

Optical coherence tomography

RNRL:

Retinal nerve fiber layer

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Harmon KG, Drezner JA, Gammons M, Guskiewicz KM, Halstead M, Herring SA, et al. American Medical Society for Sports Medicine position statement: Concussion in sport. British J Sports Med. 2013;47(1):15–26. https://doi.org/10.1136/bjsports-2012-091941.

    Article  Google Scholar 

  2. Reeves RR, Panguluri RL. Neuropsychiatric complications of traumatic brain injury. J Psychosoc Nurs Ment Health Serv. 2011;49(3):42–50. https://doi.org/10.3928/02793695-20110201-03.

    Article  PubMed  Google Scholar 

  3. Management of Concussion/m TBIWG. VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. J Rehabil Res Dev. 2009;46(6):CP1–68.

    Google Scholar 

  4. Menon DK, Schwab K, Wright DW, Maas AI, Demographics, Clinical Assessment Working Group of the I, et al. Position statement: Definition of traumatic brain injury. Arch Phys Med Rehabil. 2010;91(11):1637–40. https://doi.org/10.1016/j.apmr.2010.05.017.

    Article  PubMed  Google Scholar 

  5. Ellis MJ, Leddy JJ, Willer B. Physiological, vestibulo-ocular and cervicogenic post-concussion disorders: An evidence-based classification system with directions for treatment. Brain Inj. 2015;29(2):238–48. https://doi.org/10.3109/02699052.2014.965207.

    Article  PubMed  Google Scholar 

  6. Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC. The impact of traumatic brain injuries: A global perspective. NeuroRehabilitation. 2007;22(5):341–53.

    Article  PubMed  Google Scholar 

  7. Feigin VL, Theadom A, Barker-Collo S, Starkey NJ, McPherson K, Kahan M, et al. Incidence of traumatic brain injury in New Zealand: A population-based study. Lancet Neurol. 2013;12(1):53–64. https://doi.org/10.1016/S1474-4422(12)70262-4.

    Article  PubMed  Google Scholar 

  8. Ventura RE, Balcer LJ, Galetta SL. The neuro-ophthalmology of head trauma. Lancet Neurol. 2014;13(10):1006–16. https://doi.org/10.1016/S1474-4422(14)70111-5.

    Article  PubMed  Google Scholar 

  9. Debacker J, Ventura R, Galetta SL, Balcer LJ, Rucker JC. Neuro-ophthalmologic disorders following concussion. Handb Clin Neurol. 2018;158:145–52. https://doi.org/10.1016/B978-0-444-63954-7.00015-X.

    Article  PubMed  Google Scholar 

  10. Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991;1(1):1–47. https://doi.org/10.1093/cercor/1.1.1-a.

    Article  CAS  PubMed  Google Scholar 

  11. Master CL, Scheiman M, Gallaway M, Goodman A, Robinson RL, Master SR, et al. Vision diagnoses are common after concussion in adolescents. Clin Pediatr (Phila). 2016;55(3):260–7. https://doi.org/10.1177/0009922815594367.

    Article  PubMed  Google Scholar 

  12. McCrory P, Meeuwisse W, Dvořák J, Aubry M, Bailes J, Broglio S, et al. Consensus statement on concussion in sport-the 5th international conference on concussion in sport held in Berlin, October 2016. British J Sports Med. 2017;51(11):838–47. https://doi.org/10.1136/bjsports-2017-097699.

    Article  Google Scholar 

  13. Collins M, Lovell MR, Iverson GL, Ide T, Maroon J. Examining concussion rates and return to play in high school football players wearing newer helmet technology: A three-year prospective cohort study. Neurosurgery. 2006;58(2):275–86; discussion -86. https://doi.org/10.1227/01.NEU.0000200441.92742.46.

    Article  PubMed  Google Scholar 

  14. Dhaliwal A, West AL, Trobe JD, Musch DC. Third, fourth, and sixth cranial nerve palsies following closed head injury. J Neuroophthalmol. 2006;26(1):4–10. https://doi.org/10.1097/01.wno.0000204661.48806.1d.

    Article  PubMed  Google Scholar 

  15. Coello AF, Canals AG, Gonzalez JM, Martín JJA. Cranial nerve injury after minor head trauma. J Neurosurg. 2010;113(3):547–55. https://doi.org/10.3171/2010.6.JNS091620.

    Article  PubMed  Google Scholar 

  16. Truong JQ, Ciuffreda KJ, Han MHE, Suchoff IB. Photosensitivity in mild traumatic brain injury (mTBI): A retrospective analysis. Brain Inj. 2014;28(10):1283–7. https://doi.org/10.3109/02699052.2014.915989.

    Article  PubMed  Google Scholar 

  17. Digre KB, Brennan KC. Shedding light on photophobia. J Neuroophthalmol. 2012;32(1):68–81. https://doi.org/10.1097/WNO.0b013e3182474548.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Katz BJ, Digre KB. Diagnosis, pathophysiology, and treatment of photophobia. Surv Ophthalmol. 2016;61(4):466–77. https://doi.org/10.1016/j.survophthal.2016.02.001.

    Article  PubMed  Google Scholar 

  19. Mansur A, Hauer TM, Hussain MW, Alatwi MK, Tarazi A, Khodadadi M, et al. A nonliquid crystal display screen computer for treatment of photosensitivity and computer screen intolerance in post-concussion syndrome. J Neurotrauma. 2018;35(16):1886–94. https://doi.org/10.1089/neu.2017.5539.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Magone MT, Kwon E, Shin SY. Chronic visual dysfunction after blast-induced mild traumatic brain injury. J Rehabil Res Dev. 2014;51(1):71–80. https://doi.org/10.1682/JRRD.2013.01.0008.

    Article  PubMed  Google Scholar 

  21. Waddell PA, Gronwall DM. Sensitivity to light and sound following minor head injury. Acta Neurol Scand. 1984;69(5):270–6. https://doi.org/10.1111/j.1600-0404.1984.tb07812.x.

    Article  CAS  PubMed  Google Scholar 

  22. Vos PE, Battistin L, Birbamer G, Gerstenbrand F, Potapov A, Prevec T, et al. EFNS guideline on mild traumatic brain injury: Report of an EFNS task force. Eur J Neurol. 2002;9(3):207–19. https://doi.org/10.1046/j.1468-1331.2002.00407.x.

    Article  CAS  PubMed  Google Scholar 

  23. Bohnen N, Twijnstra A, Wijnen G, Jolles J. Tolerance for light and sound of patients with persistent post-concussional symptoms 6 months after mild head injury. J Neurol. 1991;238(8):443–6. https://doi.org/10.1007/BF00314651.

    Article  CAS  PubMed  Google Scholar 

  24. Clark J, Hasselfeld K, Bigsby K, Divine J. Colored glasses to mitigate photophobia symptoms posttraumatic brain injury. J Athl Train. 2017;52(8):725–9. https://doi.org/10.4085/1062-6050-52.4.04.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xue T, Do MTH, Riccio A, Jiang Z, Hsieh J, Wang HC, et al. Melanopsin signalling in mammalian iris and retina. Nature. 2011;479(7371):67–73. https://doi.org/10.1038/nature10567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mares C, Dagher JH, Harissi-Dagher M. Narrative review of the pathophysiology of headaches and photosensitivity in mild traumatic brain injury and concussion. Can J Neurol Sci. 2019;46(1):14–22. https://doi.org/10.1017/cjn.2018.361.

    Article  PubMed  Google Scholar 

  27. Panorgias A, Lee D, Silva KE, Borsook D, Moulton EA. Blue light activates pulvinar nuclei in longstanding idiopathic photophobia: A case report. Neuroimage Clin. 2019;24:102096. https://doi.org/10.1016/j.nicl.2019.102096.

    Article  PubMed  PubMed Central  Google Scholar 

  28. ••Diel RJ, Mehra D, Kardon R, Buse DC, Moulton E, Galor A. Photophobia: Shared pathophysiology underlying dry eye disease, migraine and traumatic brain injury leading to central neuroplasticity of the trigeminothalamic pathway. Br J Ophthalmol. 2021;105(6):751–60. https://doi.org/10.1136/bjophthalmol-2020-316417. The presence of photophobia in dry eye, migraine and TBI suggests shared trigeminothalamic pathophysiologic mechanisms. Treatment strategies targeting neural pathways should be considered in patients with persistent photophobia

    Article  PubMed  Google Scholar 

  29. Galor A, Batawi H, Felix ER, Margolis TP, Sarantopoulos KD, Martin ER, et al. Incomplete response to artificial tears is associated with features of neuropathic ocular pain. Br J Ophthalmol. 2016;100(6):745–9. https://doi.org/10.1136/bjophthalmol-2015-307094.

    Article  PubMed  Google Scholar 

  30. Adams WH, Digre KB, Patel BCK, Anderson RL, Warner JEA, Katz BJ. The evaluation of light sensitivity in benign essential blepharospasm. Am J Ophthalmol. 2006;142(1):82–7. https://doi.org/10.1016/j.ajo.2006.02.020.

    Article  PubMed  Google Scholar 

  31. Galor A, Levitt RC, Felix ER, Sarantopoulos CD. What can photophobia tell us about dry eye? Expert Rev Ophthalmol. 2016;11(5):321–4. https://doi.org/10.1080/17469899.2016.1222905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yerry JA, Kuehn D, Finkel AG. Onabotulinum toxin a for the treatment of headache in service members with a history of mild traumatic brain injury: A cohort study. Headache. 2015;55(3):395–406. https://doi.org/10.1111/head.12495.

    Article  PubMed  Google Scholar 

  33. Diel RJ, Kroeger ZA, Levitt RC, Sarantopoulos C, Sered H, Martinez-Barrizonte J, et al. Botulinum toxin A for the treatment of photophobia and dry eye. Ophthalmology. 2018;125(1):139–40. https://doi.org/10.1016/j.ophtha.2017.09.031.

    Article  PubMed  Google Scholar 

  34. Urosevich TG, Boscarino JJ, Hoffman SN, Kirchner HL, Figley CR, Adams RE, et al. Visual dysfunction and associated co-morbidities as predictors of mild traumatic brain injury seen among veterans in non-VA facilities: Implications for clinical practice. Mil Med. 2018;183(11-12):e564–e70. https://doi.org/10.1093/milmed/usy102.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Leong D, Morettin C, Messner LV, Steinmetz RJ, Pang Y, Galetta SL, et al. Visual structure and function in collision sport athletes. J Neuroophthalmol. 2018;38(3):285–91. https://doi.org/10.1097/WNO.0000000000000572.

    Article  PubMed  Google Scholar 

  36. White OB, Fielding J. Cognition and eye movements: Assessment of cerebral dysfunction. J Neuroophthalmol. 2012;32(3):266–73. https://doi.org/10.1097/WNO.0b013e3182688230.

    Article  PubMed  Google Scholar 

  37. Hutton SB. Cognitive control of saccadic eye movements. Brain Cogn. 2008;68(3):327–40. https://doi.org/10.1016/j.bandc.2008.08.021.

    Article  CAS  PubMed  Google Scholar 

  38. Liu GTVN, Galetta S. Neuro-ophthalmology: Diagnosis and management. 2nd ed. Saunders Elsevier; 2010.

    Google Scholar 

  39. Heitger MH, Anderson TJ, Jones RD, Dalrymple-Alford JC, Frampton CM, Ardagh MW. Eye movement and visuomotor arm movement deficits following mild closed head injury. Brain. 2004;127(Pt 3):575–90. https://doi.org/10.1093/brain/awh066.

    Article  PubMed  Google Scholar 

  40. Heitger MH, Jones RD, Macleod AD, Snell DL, Frampton CM, Anderson TJ. Impaired eye movements in post-concussion syndrome indicate suboptimal brain function beyond the influence of depression, malingering or intellectual ability. Brain. 2009;132(Pt 10):2850–70. https://doi.org/10.1093/brain/awp181.

    Article  PubMed  Google Scholar 

  41. Mittl RL, Grossman RI, Hiehle JF, Hurst RW, Kauder DR, Gennarelli TA, et al. Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury and normal head CT findings. AJNR Am J Neuroradiol. 1994;15(8):1583–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, Meyerand ME. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol. 2002;23(5):794–802.

    PubMed  PubMed Central  Google Scholar 

  43. Ponsford J, Willmott C, Rothwell A, Cameron P, Kelly AM, Nelms R, et al. Factors influencing outcome following mild traumatic brain injury in adults. J Int Neuropsychol Soc. 2000;6(5):568–79. https://doi.org/10.1017/s1355617700655066.

    Article  CAS  PubMed  Google Scholar 

  44. Mittenberg W, Strauman S. Diagnosis of mild head injury and the postconcussion syndrome. J Head Trauma Rehabil. 2000;15(2):783–91. https://doi.org/10.1097/00001199-200004000-00003.

    Article  CAS  PubMed  Google Scholar 

  45. Bublak P, Schubert T, Matthes-von Cramon G, von Cramon Y. Differential demands on working memory for guiding a simple action sequence: Evidence from closed-head-injured subjects. J Clin Exp Neuropsychol. 2000;22(2):176–90. https://doi.org/10.1076/1380-3395(200004)22:2;1-1;FT176.

    Article  CAS  PubMed  Google Scholar 

  46. Bruce JM, Echemendia RJ. Delayed-onset deficits in verbal encoding strategies among patients with mild traumatic brain injury. Neuropsychology. 2003;17(4):622–9. https://doi.org/10.1037/0894-4105.17.4.622.

    Article  PubMed  Google Scholar 

  47. Drew AS, Langan J, Halterman C, Osternig LR, Chou L-S, van Donkelaar P. Attentional disengagement dysfunction following mTBI assessed with the gap saccade task. Neurosci Lett. 2007;417(1):61–5. https://doi.org/10.1016/j.neulet.2007.02.038.

    Article  CAS  PubMed  Google Scholar 

  48. Kraus MF, Little DM, Donnell AJ, Reilly JL, Simonian N, Sweeney JA. Oculomotor function in chronic traumatic brain injury. Cogn Behav Neurol. 2007;20(3):170–8. https://doi.org/10.1097/WNN.0b013e318142badb.

    Article  PubMed  Google Scholar 

  49. Brahm KD, Wilgenburg HM, Kirby J, Ingalla S, Chang C-Y, Goodrich GL. Visual impairment and dysfunction in combat-injured servicemembers with traumatic brain injury. Optom Vis Sci. 2009;86(7):817–25. https://doi.org/10.1097/OPX.0b013e3181adff2d.

    Article  PubMed  Google Scholar 

  50. Rizzo J-R, Hudson TE, Dai W, Birkemeier J, Pasculli RM, Selesnick I, et al. Rapid number naming in chronic concussion: Eye movements in the King-Devick test. Ann Clin Transl Neurol. 2016;3(10):801–11. https://doi.org/10.1002/acn3.345.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rizzo J-R, Beheshti M, Dai W, Rucker JC. Eye movement recordings: Practical applications in neurology. Semin Neurol. 2019;39(6):775–84. https://doi.org/10.1055/s-0039-1698742.

    Article  PubMed  Google Scholar 

  52. Barnes GR. Cognitive processes involved in smooth pursuit eye movements. Brain Cogn. 2008;68(3):309–26. https://doi.org/10.1016/j.bandc.2008.08.020.

    Article  CAS  PubMed  Google Scholar 

  53. Maruta J, Lee SW, Jacobs EF, Ghajar J. A unified science of concussion. Ann N Y Acad Sci. 2010;1208(1):58–66. https://doi.org/10.1111/j.1749-6632.2010.05695.x.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Maruta J, Ghajar J. Detecting eye movement abnormalities from concussion. Prog Neurol Surg. 2014;28:226–33. https://doi.org/10.1159/000358786.

    Article  PubMed  Google Scholar 

  55. Snegireva N, Derman W, Patricios J, Welman KE. Eye tracking technology in sports-related concussion: A systematic review and meta-analysis. Physiol Meas. 2018;39(12):12TR01. https://doi.org/10.1088/1361-6579/aaef44.

    Article  CAS  PubMed  Google Scholar 

  56. Jacobs SM, Van Stavern GP. Neuro-ophthalmic deficits after head trauma. Curr Neurol Neurosci Rep. 2013;13(11):389. https://doi.org/10.1007/s11910-013-0389-5.

    Article  PubMed  Google Scholar 

  57. Daum KM. Accommodative dysfunction. Doc Ophthalmol. 1983;55(3):177–98. https://doi.org/10.1007/BF00140808.

    Article  CAS  PubMed  Google Scholar 

  58. Rowe FJ. Clinical orthoptics. 3rd ed. John Wiley & Sons; 2012.

    Book  Google Scholar 

  59. Cohen M, Groswasser Z, Barchadski R, Appel A. Convergence insufficiency in brain-injured patients. Brain Inj. 1989;3(2):187–91. https://doi.org/10.3109/02699058909004551.

    Article  CAS  PubMed  Google Scholar 

  60. Howell DR, O’Brien MJ, Raghuram A, Shah AS, Meehan WP. Near point of convergence and gait deficits in adolescents after sport-related concussion. Clin J Sport Med. 2018;28(3):262–7. https://doi.org/10.1097/JSM.0000000000000439.

    Article  PubMed  Google Scholar 

  61. Vernau BT, Grady MF, Goodman A, Wiebe DJ, Basta L, Park Y, et al. Oculomotor and neurocognitive assessment of youth ice hockey players: Baseline associations and observations after concussion. Dev Neuropsychol. 2015;40(1):7–11. https://doi.org/10.1080/87565641.2014.971955.

    Article  PubMed  Google Scholar 

  62. Pearce KL, Sufrinko A, Lau BC, Henry L, Collins MW, Kontos AP. Near point of convergence after a sport-related concussion: Measurement reliability and relationship to neurocognitive impairment and symptoms. Am J Sports Med. 2015;43(12):3055–61. https://doi.org/10.1177/0363546515606430.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gallaway M, Scheiman M, Mitchell GL. Vision therapy for post-concussion vision disorders. Optom Vis Sci. 2017;94(1):68–73. https://doi.org/10.1097/OPX.0000000000000935.

    Article  PubMed  Google Scholar 

  64. Rouse MW, Borsting E, Hyman L, Hussein M, Cotter SA, Flynn M, et al. Frequency of convergence insufficiency among fifth and sixth graders. The Convergence Insufficiency and Reading Study (CIRS) group. Optom Vis Sci. 1999;76(9):643–9. https://doi.org/10.1097/00006324-199909000-00022.

    Article  CAS  PubMed  Google Scholar 

  65. Scheiman M, Mitchell GL, Cotter S, Cooper J, Kulp M, Rouse M, et al. A randomized clinical trial of treatments for convergence insufficiency in children. Arch Ophthalmol. 2005;123(1):14–24. https://doi.org/10.1001/archopht.123.1.14.

    Article  PubMed  Google Scholar 

  66. Investigator PED, G. Home-based therapy for symptomatic convergence insufficiency in children: A randomized clinical trial. Optom Vis Sci. 2016;93(12):1457–65. https://doi.org/10.1097/OPX.0000000000000975.

    Article  Google Scholar 

  67. Scheiman M, Gallaway M, Frantz KA, Peters RJ, Hatch S, Cuff M, et al. Nearpoint of convergence: Test procedure, target selection, and normative data. Optom Vis Sci. 2003;80(3):214–25. https://doi.org/10.1097/00006324-200303000-00011.

    Article  PubMed  Google Scholar 

  68. Hayes GJ, Cohen BE, Rouse MW, De Land PN. Normative values for the nearpoint of convergence of elementary schoolchildren. Optom Vis Sci. 1998;75(7):506–12. https://doi.org/10.1097/00006324-199807000-00019.

    Article  CAS  PubMed  Google Scholar 

  69. Fraser CL, Mobbs R. Visual effects of concussion: A review. Clin Exp Ophthalmol. 2022;50(1):104–9. https://doi.org/10.1111/ceo.13987.

    Article  PubMed  Google Scholar 

  70. Mucha A, Collins MW, Elbin RJ, Furman JM, Troutman-Enseki C, DeWolf RM, et al. A brief vestibular/ocular motor screening (VOMS) assessment to evaluate concussions: Preliminary findings. Am J Sports Med. 2014;42(10):2479–86. https://doi.org/10.1177/0363546514543775.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mez J, Daneshvar DH, Kiernan PT, Abdolmohammadi B, Alvarez VE, Huber BR, et al. Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football. JAMA. 2017;318(4):360–70. https://doi.org/10.1001/jama.2017.8334.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kawata K, Rubin LH, Lee JH, Sim T, Takahagi M, Szwanki V, et al. Association of football subconcussive head impacts with ocular near point of convergence. JAMA Ophthalmol. 2016;134(7):763–9. https://doi.org/10.1001/jamaophthalmol.2016.1085.

    Article  PubMed  Google Scholar 

  73. Zonner SW, Ejima K, Fulgar CC, Charleston CN, Huibregtse ME, Bevilacqua ZW, et al. Oculomotor response to cumulative subconcussive head impacts in US high school football players: A pilot longitudinal study. JAMA Ophthalmol. 2019;137(3):265–70. https://doi.org/10.1001/jamaophthalmol.2018.6193.

    Article  PubMed  Google Scholar 

  74. Arnoldi K, Reynolds JD. A review of convergence insufficiency: What are we really accomplishing with exercises? Am Orthopt J. 2007;57:123–30. https://doi.org/10.3368/aoj.57.1.123.

    Article  PubMed  Google Scholar 

  75. Raghuram A, Cotter SA, Gowrisankaran S, Kanji J, Howell DR, Meehan WP, et al. Postconcussion: Receded near point of convergence is not diagnostic of convergence insufficiency. Am J Ophthalmol. 2019;206:235–44. https://doi.org/10.1016/j.ajo.2019.04.008.

    Article  PubMed  Google Scholar 

  76. Thiagarajan P, Ciuffreda KJ, Ludlam DP. Vergence dysfunction in mild traumatic brain injury (mTBI): A review. Ophthalmic Physiol Opt. 2011;31(5):456–68. https://doi.org/10.1111/j.1475-1313.2011.00831.x.

    Article  PubMed  Google Scholar 

  77. Rucker JC, Phillips PH. Efferent vision therapy. J Neuroophthalmol. 2018;38(2):230–6. https://doi.org/10.1097/WNO.0000000000000480.

    Article  PubMed  Google Scholar 

  78. Convergence Insufficiency Treatment Trial Study G. Randomized clinical trial of treatments for symptomatic convergence insufficiency in children. Arch Ophthalmol. 2008;126(10):1336–49. https://doi.org/10.1001/archopht.126.10.1336.

    Article  Google Scholar 

  79. Galetta KM, Liu M, Leong DF, Ventura RE, Galetta SL, Balcer LJ. The King-Devick test of rapid number naming for concussion detection: Meta-analysis and systematic review of the literature. Concussion. 2016;1(2):CNC8. https://doi.org/10.2217/cnc.15.8.

    Article  PubMed  Google Scholar 

  80. Galetta KM, Barrett J, Allen M, Madda F, Delicata D, Tennant AT, et al. The King-Devick test as a determinant of head trauma and concussion in boxers and MMA fighters. Neurology. 2011;76(17):1456–62. https://doi.org/10.1212/WNL.0b013e31821184c9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Galetta MS, Galetta KM, McCrossin J, Wilson JA, Moster S, Galetta SL, et al. Saccades and memory: Baseline associations of the King-Devick and SCAT2 SAC tests in professional ice hockey players. J Neurol Sci. 2013;328(1-2):28–31. https://doi.org/10.1016/j.jns.2013.02.008.

    Article  PubMed  Google Scholar 

  82. Akhand O, Balcer LJ, Galetta SL. Assessment of vision in concussion. Curr Opin Neurol. 2019;32(1):68–74. https://doi.org/10.1097/WCO.0000000000000654.

    Article  PubMed  Google Scholar 

  83. King D, Clark T, Gissane C. Use of a rapid visual screening tool for the assessment of concussion in amateur rugby league: A pilot study. J Neurol Sci. 2012;320(1-2):16–21. https://doi.org/10.1016/j.jns.2012.05.049.

    Article  PubMed  Google Scholar 

  84. Anderson HD, Biely SA. Baseline King-Devick scores for adults are not generalizable; however, age and education influence scores. Brain Inj. 2017;31(13-14):1813–9. https://doi.org/10.1080/02699052.2017.1346283.

    Article  PubMed  Google Scholar 

  85. Rizzo J-R, Hudson TE, Dai W, Desai N, Yousefi A, Palsana D, et al. Objectifying eye movements during rapid number naming: Methodology for assessment of normative data for the King-Devick test. J Neurol Sci. 2016;362:232–9. https://doi.org/10.1016/j.jns.2016.01.045.

    Article  PubMed  PubMed Central  Google Scholar 

  86. •Nowak MK, Bevilacqua ZW, Ejima K, Huibregtse ME, Chen Z, Mickleborough TD, et al. Neuro-ophthalmologic response to repetitive subconcussive head impacts: A randomized clinical trial. JAMA Ophthalmol. 2020;138(4):350–7. https://doi.org/10.1001/jamaophthalmol.2019.6128. Findings of this study showed that the 10 soccer-ball headings transiently blunted the ability to learn and adapt to the King-Devick test, suggesting that neural circuitry linking cognitive and oculomotor functions temporarily vulnerable to acute subconcussive head impacts

    Article  PubMed  PubMed Central  Google Scholar 

  87. Leong DF, Balcer LJ, Galetta SL, Liu Z, Master CL. The King-Devick test as a concussion screening tool administered by sports parents. J Sports Med Phys Fitness. 2014;54(1):70–7.

    CAS  PubMed  Google Scholar 

  88. Caccese JB, Best C, Lamond LC, Difabio M, Kaminski TW, Watson D, et al. Effects of repetitive head impacts on a concussion assessment battery. Med Sci Sports Exerc. 2019;51(7):1355–61. https://doi.org/10.1249/MSS.0000000000001905.

    Article  PubMed  Google Scholar 

  89. •Gunasekaran P, Fraser CL, Hodge C. The learning effect of the King-Devick test in semi-professional rugby union athletes. J Neurol Sci. 2020;419:117168. https://doi.org/10.1016/j.jns.2020.117168This study shows the performance on the King-Devick Test improves with repeated attempts. Thirty trials are required to achieve a ceiling effect with the largest change within the first six to eight attempts. They recommended KDT should be re-performed at consistent intervals over a season.

    Article  PubMed  Google Scholar 

  90. Cobbs L, Hasanaj L, Amorapanth P, Rizzo J-R, Nolan R, Serrano L, et al. Mobile Universal Lexicon Evaluation System (MULES) test: A new measure of rapid picture naming for concussion. J Neurol Sci. 2017;372:393–8. https://doi.org/10.1016/j.jns.2016.10.044.

    Article  PubMed  Google Scholar 

  91. Akhand O, Galetta MS, Cobbs L, Hasanaj L, Webb N, Drattell J, et al. The new Mobile Universal Lexicon Evaluation System (MULES): A test of rapid picture naming for concussion sized for the sidelines. J Neurol Sci. 2018;387:199–204. https://doi.org/10.1016/j.jns.2018.02.031.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rossion B, Pourtois G. Revisiting Snodgrass and Vanderwart's object pictorial set: The role of surface detail in basic-level object recognition. Perception. 2004;33(2):217–36. https://doi.org/10.1068/p5117.

    Article  PubMed  Google Scholar 

  93. Stockbridge MD, Doran A, King K, Newman RS. The effects of concussion on rapid picture naming in children. Brain Inj. 2018;32(4):506–14. https://doi.org/10.1080/02699052.2018.1429660.

    Article  PubMed  Google Scholar 

  94. Cummine J, Szepesvari E, Chouinard B, Hanif W, Georgiou GK. A functional investigation of RAN letters, digits, and objects: how similar are they? Behav Brain Res. 2014;275:157–65. https://doi.org/10.1016/j.bbr.2014.08.038.

    Article  PubMed  Google Scholar 

  95. Cheung CY, Chan VTT, Mok VC, Chen C, Wong TY. Potential retinal biomarkers for dementia: What is new? Curr Opin Neurol. 2019;32(1):82–91. https://doi.org/10.1097/WCO.0000000000000645.

    Article  CAS  PubMed  Google Scholar 

  96. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, et al. Chronic traumatic encephalopathy in athletes: Progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol. 2009;68(7):709–35. https://doi.org/10.1097/NEN.0b013e3181a9d503.

    Article  PubMed  Google Scholar 

  97. Mohan K, Kecova H, Hernandez-Merino E, Kardon RH, Harper MM. Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury. Invest Ophthalmol Vis Sci. 2013;54(5):3440–50. https://doi.org/10.1167/iovs.12-11522.

    Article  PubMed  PubMed Central  Google Scholar 

  98. ••Kelman JC, Hodge C, Stanwell P, Mustafic N, Fraser CL. Retinal nerve fibre changes in sports-related repetitive traumatic brain injury. Clin Exp Ophthalmol. 2020;48(2):204–11. https://doi.org/10.1111/ceo.13673. This study demonstrated significant thinning of the RNFL in professional contact sport athletes. OCT may offer an early opportunity for real time in vivo assessment of white matter changes in the setting of repetitive mild TBI

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors of this paper have directly participated in the planning, writing, editing and analysis of this article. All authors of this paper have read and approved the final version submitted.

Corresponding author

Correspondence to Shuai-Chun Lin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, SC., Su, A.W. Visual Disturbances After Concussion. Curr Phys Med Rehabil Rep 11, 384–392 (2023). https://doi.org/10.1007/s40141-023-00417-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-023-00417-3

Keywords

Navigation