Skip to main content
Log in

Robotics in Pediatric Urology- History, Evolution, and Future Directions

  • Urology (Michael Phelan, Section Editor)
  • Published:
Current Surgery Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Robotic-assisted laparoscopic surgery (RALS) has revolutionized pediatric urology over the last two decades. This review will detail the history and evolution of urologic pediatric robotic surgery from a global perspective and discuss the ways in which this unique surgical platform continues to grow.

Recent Findings

Numerous outcome studies have been performed to compare postoperative complications of robotic-assisted surgery to its laparoscopic and open counterparts, with promising results. Still, the cost efficacy, training, and dissemination of such new techniques remain a challenge. Further, there are unique opportunities to continue to advance the field with new technology including 3D printing and fluorescent imaging.

Summary

The integration of RALS into pediatric urology has advanced minimally invasive care across multiple surgical procedures, and continues to gain traction internationally. This technology is still in its youth as future iterations will continue to provide added benefits to patients, surgeons and medical institutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

RALS:

Robotic-assisted laparoscopic surgery

RALP:

Robotic-assisted laparoscopic pyeloplasty

OR:

Operating room

PRM:

Pediatric robotic mini-fellowship

ICG:

Indocyanine green

References

Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. Howe A, Kozel Z, Palmer L. Robotic surgery in pediatric urology. Asian J Urol. 2017;4(1):55–67. https://doi.org/10.1016/j.ajur.2016.06.002.

    Article  PubMed  Google Scholar 

  2. Mizuno K, Kojima Y, Nishio H, Hoshi S, Sato Y, Hayashi Y. Robotic surgery in pediatric urology: current status. Asian J Endosc Surg. 2018;11(4):308–17. https://doi.org/10.1111/ases.12653.

    Article  PubMed  Google Scholar 

  3. Satyanarayan A, Peters CA. Advances in robotic surgery for pediatric ureteropelvic junction obstruction and vesicoureteral reflux: history, present, and future. World J Urol. 2020;38(8):1821–6. https://doi.org/10.1007/s00345-019-02753-3.

    Article  PubMed  Google Scholar 

  4. Muneer A, Arya M, Shergill IS, Sharma D, Hammadeh MY, Mushtaq I. Current status of robotic surgery in pediatric urology. Pediatr Surg Int. 2008;24(9):973–7. https://doi.org/10.1007/s00383-008-2208-7.

    Article  PubMed  Google Scholar 

  5. Stitzenberg KB, Wong YN, Nielsen ME, Egleston BL, Uzzo RG. Trends in radical prostatectomy: centralization, robotics, and access to urologic cancer care. Cancer. 2012;118(1):54–62. https://doi.org/10.1002/cncr.26274.

    Article  PubMed  Google Scholar 

  6. Autorino R, Zargar H, Kaouk JH. Robotic-assisted laparoscopic surgery: recent advances in urology. Fertil Steril. 2014;102(4):939–49. https://doi.org/10.1016/j.fertnstert.2014.05.033.

    Article  PubMed  Google Scholar 

  7. Mikhail D, Sarcona J, Mekhail M, Richstone L. Urologic Robotic Surgery. Surg Clin North Am. 2020;100(2):361–78. https://doi.org/10.1016/j.suc.2019.12.003.

    Article  PubMed  Google Scholar 

  8. Olsen LH, Jorgensen TM. Computer assisted pyeloplasty in children: the retroperitoneal approach. J Urol. 2004;171(6 Part 2):2629–31. https://doi.org/10.1097/01.ju.0000110655.38368.56.

    Article  CAS  PubMed  Google Scholar 

  9. Atug F, Woods M, Burgess SV, Castle EP, Thomas R. Robotic assisted laparoscopic pyeloplasty in children. J Urol. 2005;174(4 Part 1):1440–2. https://doi.org/10.1097/01.ju.0000173131.64558.c9.

    Article  PubMed  Google Scholar 

  10. Lee RS, Retik AB, Borer JG, Peters CA. Pediatric robot assisted laparoscopic dismembered pyeloplasty: comparison with a cohort of open surgery. J Urol. 2006;175(2):683–7. https://doi.org/10.1016/S0022-5347(05)00183-7.

    Article  PubMed  Google Scholar 

  11. Peters CA. Robotically assisted surgery in pediatric urology. Urol Clin. 2004;31(4):743–52. https://doi.org/10.1016/j.ucl.2004.06.007.

    Article  Google Scholar 

  12. Sheth KR, Koh CJ. The Future of robotic surgery in pediatric urology: upcoming technology and evolution within the field. Front Pediatr. 2019;7:259. https://doi.org/10.3389/fped.2019.00259.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Varda BK, Wang Y, Chung BI, et al. Has the robot caught up? National trends in utilization, perioperative outcomes, and cost for open, laparoscopic, and robotic pediatric pyeloplasty in the United States from 2003 to 2015. J Pediatr Urol. 2018;14(4):336.e1-8. https://doi.org/10.1016/j.jpurol.2017.12.010.

    Article  PubMed  Google Scholar 

  14. Salkini MW. Robotic surgery in pediatric urology. Urol Ann. 2022;14(4):314–6. https://doi.org/10.4103/ua.ua_36_22.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cundy TP, Harley SJD, Marcus HJ, Hughes-Hallett A, Khurana S. Global trends in paediatric robot-assisted urological surgery: a bibliometric and progressive scholarly acceptance analysis. J Robotic Surg. 2018;12(1):109–15. https://doi.org/10.1007/s11701-017-0703-3.

    Article  Google Scholar 

  16. Denning NL, Kallis MP, Prince JM. Pediatric robotic surgery. Surg Clin North Am. 2020;100(2):431–43. https://doi.org/10.1016/j.suc.2019.12.004.

    Article  PubMed  Google Scholar 

  17. Pedraza R, Weiser A, Franco I. Laparoscopic appendicovesicostomy (Mitrofanoff procedure) in a child using the da Vinci robotic system. J Urol. 2004;171(4):1652–3. https://doi.org/10.1097/01.ju.0000116066.72132.9a.

    Article  PubMed  Google Scholar 

  18. Thakre AA, Yeung CK, Peters C. Robot-assisted Mitrofanoff and Malone antegrade continence enema reconstruction using divided appendix. J Endourol. 2008;22(10):2393–6. https://doi.org/10.1089/end.2008.0256.

    Article  PubMed  Google Scholar 

  19. • Andolfi C, Kumar R, Boysen WR, Gundeti MS. Current status of robotic surgery in pediatric urology. J Laparoendosc Adv Surg Tech. 2019;29(2):159–66. https://doi.org/10.1089/lap.2018.0745. (Comprehensive summary of the various procedures and outcomes within pediatric urology RALS.)

  20. Villanueva J, Killian M, Chaudhry R. Robotic urologic surgery in the infant: a review. Curr Urol Rep. 2019;20(7):35. https://doi.org/10.1007/s11934-019-0902-8.

    Article  PubMed  Google Scholar 

  21. Morrell ALG, Morrell-Junior AC, Morrell AG, et al. The history of robotic surgery and its evolution: when illusion becomes reality. Rev Col Bras Cir. 2021. https://doi.org/10.1590/0100-6991e-20202798.

    Article  PubMed  Google Scholar 

  22. Cundy TP, Shetty K, Clark J, et al. The first decade of robotic surgery in children. J Pediatr Surg. 2013;48(4):858–65. https://doi.org/10.1016/j.jpedsurg.2013.01.031.

    Article  PubMed  Google Scholar 

  23. Soto Beauregard C, de Alarcón Rodríguez, García J, Domínguez Amillo EE, Gómez Cervantes M, Ávila Ramírez LF. Implementing a pediatric robotic surgery program: future perspectives. Cir Pediatr. 2022;35(4):187–95. https://doi.org/10.54847/cp.2022.04.19.

    Article  CAS  PubMed  Google Scholar 

  24. Cundy TP, Mayer EK, Camps JI, et al. Education and training in pediatric robotic surgery: lessons learned from an inaugural multinational workshop. J Robotic Surg. 2015;9(1):57–63. https://doi.org/10.1007/s11701-014-0490-z.

    Article  Google Scholar 

  25. • Andolfi C, Patel D, Rodriguez VM, Gundeti MS. Impact and outcomes of a pediatric robotic urology mini-fellowship. Front Surg. 2019;6:22. https://doi.org/10.3389/fsurg.2019.00022. (This article highlights the importance of PRMs and the strides being made towards the learning and training of RALS.)

  26. Moldes JM, de Badiola FI, Vagni RL, et al. Pediatric robotic surgery in south america: advantages and difficulties in program implementation. Front Pediatr. 2019;7:94. https://doi.org/10.3389/fped.2019.00094.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bansal D, Chaturvedi S, Maheshwari R, Kumar A. Role of laparoscopy in the era of robotic surgery in urology in developing countries. Indian J Urol. 2021;37(1):32–41. https://doi.org/10.4103/iju.IJU_252_20.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Minnillo BJ, Cruz JAS, Sayao RH, et al. Long-term experience and outcomes of robotic assisted laparoscopic pyeloplasty in children and young adults. J Urol. 2011;185(4):1455–60. https://doi.org/10.1016/j.juro.2010.11.056.

    Article  PubMed  Google Scholar 

  29. Dangle PP, Akhavan A, Odeleye M, et al. Ninety-day perioperative complications of pediatric robotic urological surgery: a multi-institutional study. J Pediatr Urol. 2016;12(2):102.e1-6. https://doi.org/10.1016/j.jpurol.2015.08.015.

    Article  CAS  PubMed  Google Scholar 

  30. • Murthy P, Cohn JA, Gundeti MS. Evaluation of robotic-assisted laparoscopic and open pyeloplasty in children: single-surgeon experience. Ann R Coll Surg Engl. 2015;97(2):109–14. https://doi.org/10.1308/003588414X14055925058797. (Outcomes study demonstrating the feasibility and benefits of pediatric RALP in comparison to traditional open pyeloplasty.)

  31. Song SH, Lee C, Jung J, et al. A comparative study of pediatric open pyeloplasty, laparoscopy-assisted extracorporeal pyeloplasty, and robot-assisted laparoscopic pyeloplasty. PLoS One. 2017;12(4):0175026. https://doi.org/10.1371/journal.pone.0175026.

    Article  CAS  Google Scholar 

  32. Silay MS, Danacioglu O, Ozel K, Karaman MI, Caskurlu T. Laparoscopy versus robotic-assisted pyeloplasty in children: preliminary results of a pilot prospective randomized controlled trial. World J Urol. 2020;38(8):1841–8. https://doi.org/10.1007/s00345-019-02910-8.

    Article  PubMed  Google Scholar 

  33. Smith RP, Oliver JL, Peters CA. Pediatric robotic extravesical ureteral reimplantation: comparison with open surgery. J Urol. 2011;185(5):1876–81. https://doi.org/10.1016/j.juro.2010.12.072.

    Article  PubMed  Google Scholar 

  34. Marchini GS, Hong YK, Minnillo BJ, et al. Robotic assisted laparoscopic ureteral reimplantation in children: case matched comparative study with open surgical approach. J Urol. 2011;185(5):1870–5. https://doi.org/10.1016/j.juro.2010.12.069.

    Article  PubMed  Google Scholar 

  35. Schomburg JL, Haberman K, Willihnganz-Lawson KH, Shukla AR. Robot-assisted laparoscopic ureteral reimplantation: a single surgeon comparison to open surgery. J Pediatr Urol. 2014;10(5):875–9. https://doi.org/10.1016/j.jpurol.2014.02.013.

    Article  PubMed  Google Scholar 

  36. Gundeti MS, Boysen WR, Shah A. Robot-assisted laparoscopic extravesical ureteral reimplantation: technique modifications contribute to optimized outcomes. Eur Urol. 2016;70(5):818–23. https://doi.org/10.1016/j.eururo.2016.02.065.

    Article  PubMed  Google Scholar 

  37. Boysen WR, Ellison JS, Kim C, et al. Multi-institutional review of outcomes and complications of robot-assisted laparoscopic extravesical ureteral reimplantation for treatment of primary vesicoureteral reflux in children. J Urol. 2017;197(6):1555–61. https://doi.org/10.1016/j.juro.2017.01.062.

    Article  PubMed  Google Scholar 

  38. Boysen WR, Akhavan A, Ko J, et al. Prospective multicenter study on robot-assisted laparoscopic extravesical ureteral reimplantation (RALUR-EV): outcomes and complications. J Pediatr Urol. 2018;14(3):262.e1-6. https://doi.org/10.1016/j.jpurol.2018.01.020.

    Article  PubMed  Google Scholar 

  39. Galansky L, Andolfi C, Adamic B, Gundeti MS. Continent cutaneous catheterizable channels in pediatric patients: a decade of experience with open and robotic approaches in a single center. Eur Urol. 2021;79(6):866–78. https://doi.org/10.1016/j.eururo.2020.08.013.

    Article  PubMed  Google Scholar 

  40. Juul N, Persad E, Willacy O, Thorup J, Fossum M, Reinhardt S. Robot-assisted vs open appendicovesicostomy in pediatric urology: a systematic review and single-center case series. Front Pediatr. 2022. https://doi.org/10.3389/fped.2022.908554.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Grimsby GM, Jacobs MA, Gargollo PC. Comparison of complications of robot-assisted laparoscopic and open appendicovesicostomy in children. J Urol. 2015;194(3):772–6. https://doi.org/10.1016/j.juro.2015.02.2942.

    Article  PubMed  Google Scholar 

  42. Gundeti MS, Petravick ME, Pariser JJ, et al. A multi-institutional study of perioperative and functional outcomes for pediatric robotic-assisted laparoscopic Mitrofanoff appendicovesicostomy. J Pediatr Urol. 2016;12(6):386.e1-5. https://doi.org/10.1016/j.jpurol.2016.05.031.

    Article  PubMed  Google Scholar 

  43. Nguyen HT, Passerotti CC, Penna FJ, Retik AB, Peters CA. Robotic assisted laparoscopic mitrofanoff appendicovesicostomy: preliminary experience in a pediatric population. J Urol. 2009;182(4):1528–34. https://doi.org/10.1016/j.juro.2009.06.055.

    Article  PubMed  Google Scholar 

  44. Famakinwa OJ, Rosen AM, Gundeti MS. Robot-assisted laparoscopic mitrofanoff appendicovesicostomy technique and outcomes of extravesical and intravesical approaches. Eur Urol. 2013;64(5):831–6. https://doi.org/10.1016/j.eururo.2013.05.007.

    Article  PubMed  Google Scholar 

  45. Wille MA, Zagaja GP, Shalhav AL, Gundeti MS. Continence outcomes in patients undergoing robotic assisted laparoscopic mitrofanoff appendicovesicostomy. J Urol. 2011;185(4):1438–43. https://doi.org/10.1016/j.juro.2010.11.050.

    Article  PubMed  Google Scholar 

  46. Saoud R, Abou Heidar N, Andolfi C, Gundeti MS. Antegrade colonic enema channels in pediatric patients using appendix or cecal flap: a comparative robotic vs open series. J Endourol. 2022;36(4):462–7. https://doi.org/10.1089/end.2021.0403.

    Article  PubMed  Google Scholar 

  47. Halleran DR, Wood RJ, Vilanova-Sanchez A, et al. Simultaneous robotic-assisted laparoscopy for bladder and bowel reconstruction. J Laparoendosc Adv Surg Tech. 2018;28(12):1513–6. https://doi.org/10.1089/lap.2018.0190.

    Article  Google Scholar 

  48. Ballouhey Q, Binet A, Clermidi P, et al. Partial nephrectomy for small children: Robot-assisted versus open surgery. Int J Urol. 2017;24(12):855–60. https://doi.org/10.1111/iju.13466.

    Article  CAS  PubMed  Google Scholar 

  49. Neheman A, Kord E, Strine AC, et al. Pediatric partial nephrectomy for upper urinary tract duplication anomalies: a comparison between different surgical approaches and techniques. Urology. 2019;125:196–201. https://doi.org/10.1016/j.urology.2018.11.026.

    Article  PubMed  Google Scholar 

  50. Malik RD, Pariser JJ, Gundeti MS. Outcomes in pediatric robot-assisted laparoscopic heminephrectomy compared with contemporary open and laparoscopic series. J Endourol. 2015;29(12):1346–52. https://doi.org/10.1089/end.2014.0818.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mason MD, Anthony Herndon CD, Smith-Harrison LI, Peters CA, Corbett ST. Robotic-assisted partial nephrectomy in duplicated collecting systems in the pediatric population: techniques and outcomes. J Pediatr Urol. 2014;10(2):374–9. https://doi.org/10.1016/j.jpurol.2013.10.014.

    Article  PubMed  Google Scholar 

  52. Kawal T, Sahadev R, Srinivasan A, et al. Robotic surgery in infants and children: an argument for smaller and fewer incisions. World J Urol. 2020;38(8):1835–40. https://doi.org/10.1007/s00345-019-02765-z.

    Article  PubMed  Google Scholar 

  53. Lombardo AM, Gundeti MS. Review of robot-assisted laparoscopic surgery in management of infant congenital urology: advances and limitations in utilization and learning. Int J Urol. 2023;30(3):250–7. https://doi.org/10.1111/iju.15105.

    Article  PubMed  Google Scholar 

  54. Molinaro F, Angotti R, Bindi E, et al. Low weight child: can it be considered a limit of robotic surgery? experience of two centers. J Laparoendosc Adv Surg Tech A. 2019;29(5):698–702. https://doi.org/10.1089/lap.2017.0681.

    Article  PubMed  Google Scholar 

  55. Masieri L, Sforza S, Grosso AA, et al. Does the body weight influence the outcome in children treated with robotic pyeloplasty? J Pediatr Urol. 2020;16(1):109.e1-6. https://doi.org/10.1016/j.jpurol.2019.10.023.

    Article  PubMed  Google Scholar 

  56. Kafka IZ, Kocherov S, Jaber J, Chertin B. Pediatric robotic-assisted laparoscopic pyeloplasty (RALP): does weight matter? Pediatr Surg Int. 2019;35(3):391–6. https://doi.org/10.1007/s00383-019-04435-y.

    Article  PubMed  Google Scholar 

  57. Rague JT, Shannon R, Rosoklija I, Lindgren BW, Gong EM. Robot-assisted laparoscopic urologic surgery in infants weighing ≤10 kg: A weight stratified analysis. J Pediatr Urol. 2021;17(6):857.e1-7. https://doi.org/10.1016/j.jpurol.2021.09.023.

    Article  PubMed  Google Scholar 

  58. Bansal D, Cost NG, DeFoor WR, et al. Infant robotic pyeloplasty: comparison with an open cohort. J Pediatr Urol. 2014;10(2):380–5. https://doi.org/10.1016/j.jpurol.2013.10.016.

    Article  CAS  PubMed  Google Scholar 

  59. Neheman A, Kord E, Zisman A, Darawsha AE, Noh PH. Comparison of robotic pyeloplasty and standard laparoscopic pyeloplasty in infants: a bi-institutional study. J Laparoendosc Adv Surg Tech A. 2018;28(4):467–70. https://doi.org/10.1089/lap.2017.0262.

    Article  PubMed  Google Scholar 

  60. Kawal T, Srinivasan AK, Shrivastava D, et al. Pediatric robotic-assisted laparoscopic pyeloplasty: does age matter? J Pediatr Urol. 2018;14(6):540.e1-6. https://doi.org/10.1016/j.jpurol.2018.04.023.

    Article  CAS  PubMed  Google Scholar 

  61. Andolfi C, Rodríguez VM, Galansky L, Gundeti MS. Infant Robot-assisted laparoscopic pyeloplasty: outcomes at a single institution, and tips for safety and success. Eur Urol. 2021;80(5):621–31. https://doi.org/10.1016/j.eururo.2021.06.019.

    Article  PubMed  Google Scholar 

  62. Finkelstein JB, Levy AC, Silva MV, Murray L, Delaney C, Casale P. How to decide which infant can have robotic surgery? Just do the math. J Pediatr Urol. 2015;11(4):170.e1-4. https://doi.org/10.1016/j.jpurol.2014.11.020.

    Article  CAS  PubMed  Google Scholar 

  63. Mahida JB, Cooper JN, Herz D, et al. Utilization and costs associated with robotic surgery in children. J Surg Res. 2015;199(1):169–76. https://doi.org/10.1016/j.jss.2015.04.087.

    Article  PubMed  Google Scholar 

  64. Behan JW, Kim SS, Dorey F, et al. Human capital gains associated with robotic assisted laparoscopic pyeloplasty in children compared to open pyeloplasty. J Urol. 2011;186(4 Suppl):1663–7. https://doi.org/10.1016/j.juro.2011.04.019.

    Article  PubMed  Google Scholar 

  65. Rowe CK, Pierce MW, Tecci KC, et al. A Comparative direct cost analysis of pediatric urologic robot-assisted laparoscopic surgery versus open surgery: could robot-assisted surgery be less expensive? J Endourol. 2012;26(7):871–7. https://doi.org/10.1089/end.2011.0584.

    Article  PubMed  Google Scholar 

  66. Ramanathan R, Salamanca JIM, Mandhani A, et al. Does 3-Dimensional (3-D) visualization improve the quality of assistance during robotic radical prostatectomy? World J Urol. 2009;27(1):95–9. https://doi.org/10.1007/s00345-008-0325-5.

    Article  PubMed  Google Scholar 

  67. Ahmadi H, Liu JJ. 3-D Imaging and Simulation for Nephron Sparing Surgical Training. Curr Urol Rep. 2016;17(8):58. https://doi.org/10.1007/s11934-016-0614-2.

    Article  PubMed  Google Scholar 

  68. Shirk JD, Thiel DD, Wallen EM, et al. Effect of 3-dimensional virtual reality models for surgical planning of robotic-assisted partial nephrectomy on surgical outcomes: a randomized clinical trial. JAMA Netw Open. 2019;2(9):1911598. https://doi.org/10.1001/jamanetworkopen.2019.11598.

    Article  Google Scholar 

  69. Ghazi AE, Teplitz BA. Role of 3D printing in surgical education for robotic urology procedures. Transl Androl Urol. 2020;9(2):93141–941. https://doi.org/10.21037/tau.2020.01.03.

    Article  Google Scholar 

  70. Porpiglia F, Amparore D, Checcucci E, et al. current use of three-dimensional model technology in urology: a road map for personalised surgical planning. Eur Urol Focus. 2018;4(5):652–6. https://doi.org/10.1016/j.euf.2018.09.012.

    Article  PubMed  Google Scholar 

  71. Cacciamani GE, Okhunov Z, Meneses AD, et al. impact of three-dimensional printing in urology: state of the art and future perspectives a systematic review by ESUT-YAUWP group. European Urology. 2019;76(2):209–21. https://doi.org/10.1016/j.eururo.2019.04.044.

    Article  PubMed  Google Scholar 

  72. The ESUT Research Group, Porpiglia F, Bertolo R, et al. Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists’ and patients’ perception. World J Urol. 2018;36(2):201–7. https://doi.org/10.1007/s00345-017-2126-1.

    Article  Google Scholar 

  73. Kusaka M, Sugimoto M, Fukami N, et al. Initial experience with a tailor-made simulation and navigation program using a 3-D printer model of kidney transplantation surgery. Transplant Proc. 2015;47(3):596–9. https://doi.org/10.1016/j.transproceed.2014.12.045.

    Article  CAS  PubMed  Google Scholar 

  74. Lee H, Nguyen NH, Hwang SI, Lee HJ, Hong SK, Byun SS. Personalized 3D kidney model produced by rapid prototyping method and its usefulness in clinical applications. Int Braz J Urol. 2018;44(5):952–7. https://doi.org/10.1590/S1677-5538.IBJU.2018.0162.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lee YJ, van den Berg NS, Orosco RK, Rosenthal EL, Sorger JM. A narrative review of fluorescence imaging in robotic-assisted surgery. Laparosc Surg. 2021. https://doi.org/10.21037/ls-20-98.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Alander JT, Kaartinen I, Laakso A, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging. 2012. https://doi.org/10.1155/2012/940585.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Meershoek P, KleinJan GH, van Willigen DM, et al. Multi-wavelength fluorescence imaging with a da Vinci Firefly—a technical look behind the scenes. J Robotic Surg. 2021;15(5):751–60. https://doi.org/10.1007/s11701-020-01170-8.

    Article  Google Scholar 

  78. Cacciamani GE, Shakir A, Tafuri A, et al. Best practices in near-infrared fluorescence imaging with indocyanine green (NIRF/ICG)-guided robotic urologic surgery: a systematic review-based expert consensus. World J Urol. 2020;38(4):883–96. https://doi.org/10.1007/s00345-019-02870-z.

    Article  PubMed  Google Scholar 

  79. Esposito C, Settimi A, Del Conte F, et al. Image-guided pediatric surgery using indocyanine green (ICG) fluorescence in laparoscopic and robotic surgery. Front Pediatr. 2020;8:314. https://doi.org/10.3389/fped.2020.00314.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Le-Nguyen A, O’Neill Trudeau M, Dodin P, Keezer MR, Faure C, Piché N. The use of indocyanine green fluorescence angiography in pediatric surgery: a systematic review and narrative analysis. Front Pediatr. 2021. https://doi.org/10.3389/fped.2021.736242.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Esposito C, Coppola V, Del Conte F, et al. Near-Infrared fluorescence imaging using indocyanine green (ICG): emerging applications in pediatric urology. J Pediatr Urol. 2020;16(5):700–7. https://doi.org/10.1016/j.jpurol.2020.07.008.

    Article  PubMed  Google Scholar 

  82. Andolfi C, Umanskiy K. Mastering robotic surgery: where does the learning curve lead us? J Laparoendosc Adv Surg Tech. 2017;27(5):470–4. https://doi.org/10.1089/lap.2016.0641.

    Article  Google Scholar 

  83. Murthy PB, Schadler ED, Orvieto M, Zagaja G, Shalhav AL, Gundeti MS. Setting up a pediatric robotic urology program: a USA institution experience. Int J Urol. 2018;25(2):86–93. https://doi.org/10.1111/iju.13415.

    Article  PubMed  Google Scholar 

  84. Lendvay TS, Casale P, Sweet R, Peters C. VR robotic surgery: randomized blinded study of the dV-Trainer robotic simulator. Stud Health Technol Inform. 2008;132:242–4.

    PubMed  Google Scholar 

  85. Schmidt MW, Köppinger KF, Fan C, et al. Virtual reality simulation in robot-assisted surgery: meta-analysis of skill transfer and predictability of skill. BJS Open. 2021;5(2):zraa066. https://doi.org/10.1093/bjsopen/zraa066.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dawe SR, Pena GN, Windsor JA, et al. Systematic review of skills transfer after surgical simulation-based training. Br J Surg. 2014;101(9):1063–76. https://doi.org/10.1002/bjs.9482.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MHX: administration, writing, reviewing, revising; SWH: writing, review, revising; MSG: conceptualization, reviewing, supervision.

Corresponding author

Correspondence to Monica H. Xing.

Ethics declarations

Conflict of interest

None.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, M.H., Hou, S.W. & Gundeti, M.S. Robotics in Pediatric Urology- History, Evolution, and Future Directions. Curr Surg Rep 11, 291–299 (2023). https://doi.org/10.1007/s40137-023-00375-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40137-023-00375-8

Keywords

Navigation