Skip to main content

Advertisement

Log in

Implications of Concurrent Vestibular Dysfunction in Pediatric Hearing Loss

  • Hearing Loss in Children (D Horn and H Ou, Section Editors)
  • Published:
Current Otorhinolaryngology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

It is known that the prevalence of vestibular impairment in children with sensorineural hearing loss (SNHL) is high and can lead to balance deficits. In this review, we look beyond balance and consider the impact of this multisensory deficit on neurocognitive function and navigation with the aim of explaining some of the variability in outcomes seen in cochlear implant populations, considering how to ameliorate these outcomes with targeted rehabilitative strategies.

Recent Findings

Congenital or early acquired vestibular impairment associated with SNHL impacts multiple cognitive domains including spatial memory. The attentional demands of maintaining postural stability are also significant and receive priority over other competing tasks, leading to a broader impact in everyday life.

Summary

Vestibular impairment is common in children with SNHL and impacts their daily function. Early recognition of vestibular deficits is key and several promising therapeutic approaches, including the restoration of bilateral and potentially binaural hearing, are currently under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Tien HC, Linthicum FH Jr. Histopathologic changes in the vestibule after cochlear implantation. Otolaryngol Head Neck Surg. 2002;127(4):260–4.

    PubMed  Google Scholar 

  2. Jacot E, Van Den Abbeele T, Debre HR, Wiener-Vacher SR. Vestibular impairments pre- and post-cochlear implant in children. Int J Pediatr Otorhinolaryngol. 2009;73(2):209–17.

    PubMed  Google Scholar 

  3. Wiener-Vacher SR, Obeid R, Abou-Elew M. Vestibular impairment after bacterial meningitis delays infant posturomotor development. J Pediatr. 2012;161(2):246–51 e1.

    PubMed  Google Scholar 

  4. Wienner Vacher S NPN, Francois M, Viala P, Tessier N, Van den Abbeele, T, editors. Impact of cochear implant of vestibular function in children and decision between two steps or one step bilateral implant. T0ulouse 12th European Symposium on Pediatric Cochlear Implants; 2015 June 18-21,2015.

  5. Weissman BM, DiScenna AO, Leigh RJ. Maturation of the vestibulo-ocular reflex in normal infants during the first 2 months of life. Neurology. 1989;39(4):534–8.

    PubMed  CAS  Google Scholar 

  6. Eviatar L, Eviatar A. The normal nystagmic response of infants to caloric and perrotatory stimulation. Laryngoscope. 1979;89(7 Pt 1):1036–45.

    PubMed  CAS  Google Scholar 

  7. Assaiante C. Development of locomotor balance control in healthy children. Neurosci Biobehav Rev. 1998;22(4):527–32.

    PubMed  CAS  Google Scholar 

  8. Shumway-Cook A, Woollacott M. Attentional demands and postural control: the effect of sensory context. J Gerontol A Biol Sci Med Sci. 2000;55(1):M10–6.

    PubMed  CAS  Google Scholar 

  9. Hirabayashi S, Iwasaki Y. Developmental perspective of sensory organization on postural control. Brain Dev. 1995;17(2):111–3.

    PubMed  CAS  Google Scholar 

  10. Forssberg H, Nashner LM. Ontogenetic development of postural control in man: adaptation to altered support and visual conditions during stance. J Neurosci. 1982;2(5):545–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Shumway-Cook A, Woollacott MH. The growth of stability: postural control from a development perspective. J Mot Behav. 1985;17(2):131–47.

    PubMed  CAS  Google Scholar 

  12. Hatzitaki V, Zisi V, Kollias I, Kioumourtzoglou E. Perceptual-motor contributions to static and dynamic balance control in children. J Mot Behav. 2002;34(2):161–70.

    PubMed  CAS  Google Scholar 

  13. Buchman CA, Joy J, Hodges A, Telischi FF, Balkany TJ. Vestibular effects of cochlear implantation. Laryngoscope. 2004;114(10 Pt 2 Suppl 103):1–22.

    PubMed  Google Scholar 

  14. Cushing SL, Chia R, James AL, Papsin BC, Gordon KA. A test of static and dynamic balance function in children with cochlear implants: the vestibular olympics. Arch Otolaryngol Head Neck Surg. 2008;134(1):34–8.

    PubMed  Google Scholar 

  15. Selz PA, Girardi M, Konrad HR, Hughes LF. Vestibular deficits in deaf children. Otolaryngol Head Neck Surg. 1996;115(1):70–7.

    PubMed  CAS  Google Scholar 

  16. Cushing SL, Gordon KA, Rutka JA, James AL, Papsin BC. Vestibular end-organ dysfunction in children with sensorineural hearing loss and cochlear implants: an expanded cohort and etiologic assessment. Otol Neurotol. 2013;34(3):422–8.

    PubMed  Google Scholar 

  17. Cushing SL, Papsin BC, Rutka JA, James AL, Blaser SL, Gordon KA. Vestibular end-organ and balance deficits after meningitis and cochlear implantation in children correlate poorly with functional outcome. Otol Neurotol. 2009;30(4):488–95.

    PubMed  Google Scholar 

  18. Cushing SL, Papsin BC, Rutka JA, James AL, Gordon KA. Evidence of vestibular and balance dysfunction in children with profound sensorineural hearing loss using cochlear implants. Laryngoscope. 2008;118(10):1814–23.

    PubMed  Google Scholar 

  19. Cushing SL, Papsin BC. Taking the history and performing the physical examination in a child with hearing loss. Otolaryngol Clin N Am. 2015;48(6):903–12.

    Google Scholar 

  20. Cushing SL, Papsin BC. Cochlear implants and children with vestibular impairments. Semin Hear. 2018;39(3):305–20.

    PubMed  PubMed Central  Google Scholar 

  21. Oyewumi M, Wolter NE, Heon E, Gordon KA, Papsin BC, Cushing SL. Using balance function to screen for vestibular impairment in children with sensorineural hearing loss and cochlear implants. Otol Neurotol. 2016;37(7):926–32.

    PubMed  Google Scholar 

  22. Kimura Y, Masuda T, Kaga K. Vestibular function and gross motor development in 195 children with congenital hearing loss-assessment of inner ear malformations. Otol Neurotol. 2018;39(2):196–205.

    PubMed  Google Scholar 

  23. Kaga K. Vestibular compensation in infants and children with congenital and acquired vestibular loss in both ears. Int J Pediatr Otorhinolaryngol. 1999;49(3):215–24.

    PubMed  CAS  Google Scholar 

  24. Suarez H, Angeli S, Suarez A, Rosales B, Carrera X, Alonso R. Balance sensory organization in children with profound hearing loss and cochlear implants. Int J Pediatr Otorhinolaryngol. 2007;71(4):629–37.

    PubMed  CAS  Google Scholar 

  25. Wiegersma PH, Van der Velde A. Motor development of deaf children. J Child Psychol Psychiatry. 1983;24(1):103–11.

    PubMed  CAS  Google Scholar 

  26. Rine RM, Cornwall G, Gan K, LoCascio C, O'Hare T, Robinson E, et al. Evidence of progressive delay of motor development in children with sensorineural hearing loss and concurrent vestibular dysfunction. Percept Mot Skills. 2000;90(3 Pt 2):1101–12.

    PubMed  CAS  Google Scholar 

  27. Tsuzuku T, Kaga K. Delayed motor function and results of vestibular function tests in children with inner ear anomalies. Int J Pediatr Otorhinolaryngol. 1992;23(3):261–8.

    PubMed  CAS  Google Scholar 

  28. Enbom H, Magnusson M, Pyykko I. Postural compensation in children with congenital or early acquired bilateral vestibular loss. Ann Otol Rhinol Laryngol. 1991;100(6):472–8.

    PubMed  CAS  Google Scholar 

  29. • Suarez H, Ferreira E, Alonso R, Arocena S, San Roman C, Herrera T, et al. Postural responses applied in a control model in cochlear implant users with pre-lingual hearing loss. Acta Otolaryngol. 2016;136(4):344–50 Findings from this study outline the differences in postural development that occur in children with pre-lingual hearing loss compared to their normal hearing peers.

    PubMed  Google Scholar 

  30. Huygen PL, van Rijn PM, Cremers CW, Theunissen EJ. The vestibulo-ocular reflex in pupils at a Dutch school for the hearing impaired; findings relating to acquired causes. Int J Pediatr Otorhinolaryngol. 1993;25(1–3):39–47.

    PubMed  CAS  Google Scholar 

  31. Rapin I. Hypoactive labyrinths and motor development. Clin Pediatr (Phila). 1974;13(11):922–3, 6-9, 34-7, 937.

    CAS  Google Scholar 

  32. Goldstein R, Landau WM, Kleffner FR. Neurologic assessment of some deaf and aphasic children. Ann Otol Rhinol Laryngol. 1958;67(2):468–79.

    PubMed  CAS  Google Scholar 

  33. Sandberg LE, Terkildsen K. Caloric tests in deaf children. Arch Otolaryngol. 1965;81:350–4.

    PubMed  CAS  Google Scholar 

  34. Kaplan SL, Goddard J, Van Kleeck M, Catlin FI, Feigin RD. Ataxia and deafness in children due to bacterial meningitis. Pediatrics. 1981;68(1):8–13.

    PubMed  CAS  Google Scholar 

  35. Karjalainen S, Terasvirta M, Karja J, Kaariainen H. Usher’s syndrome type III: ENG findings in four affected and six unaffected siblings. J Laryngol Otol. 1985;99(1):43–8.

    PubMed  CAS  Google Scholar 

  36. Kumar A, Fishman G, Torok N. Vestibular and auditory function in Usher’s syndrome. Ann Otol Rhinol Laryngol. 1984;93(6 Pt 1):600–8.

    PubMed  CAS  Google Scholar 

  37. Otterstedde CR, Spandau U, Blankenagel A, Kimberling WJ, Reisser C. A new clinical classification for Usher’s syndrome based on a new subtype of Usher’s syndrome type I. Laryngoscope. 2001;111(1):84–6.

    PubMed  CAS  Google Scholar 

  38. Samuelson S, Zahn J. Usher’s syndrome. Ophthalmic Paediatr Genet. 1990;11(1):71–6.

    PubMed  CAS  Google Scholar 

  39. Dollard SC, Grosse SD, Ross DS. New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev Med Virol. 2007;17(5):355–63.

    PubMed  Google Scholar 

  40. Bulman DE, Yeh E, Durie D, McClelland S, Theriault M, Liyanage H, et al. MG-129 The development of a genetic newborn screening assay for permanent hearing loss using blood spots – a collaboration between newborn screening ontario (NSO) and the infant hearing program (IHP). J Med Genet. 2015;52(Suppl 1):A8–A.

    Google Scholar 

  41. Teissier N, Delezoide AL, Mas AE, Khung-Savatovsky S, Bessieres B, Nardelli J, et al. Inner ear lesions in congenital cytomegalovirus infection of human fetuses. Acta Neuropathol. 2011;122:763–44.

    PubMed  Google Scholar 

  42. Carraro M, Park AH, Harrison RV. Partial corrosion casting to assess cochlear vasculature in mouse models of presbycusis and CMV infection. Hear Res. 2016;332:95–103.

    PubMed  Google Scholar 

  43. Carraro M, Almishaal A, Hillas E, Firpo M, Park A, Harrison RV. Cytomegalovirus (CMV) infection causes degeneration of cochlear vasculature and hearing loss in a mouse model. J Assoc Res Otolaryngol. 2017;18(2):263–73.

    PubMed  Google Scholar 

  44. Zagolski O. Vestibular-evoked myogenic potentials and caloric stimulation in infants with congenital cytomegalovirus infection. J Laryngol Otol. 2008;122:574–9.

    PubMed  CAS  Google Scholar 

  45. Teissier N, Bernard S, Quesnel S, Van Den Abbeele T. Audiovestibular consequences of congenital cytomegalovirus infection. Eur Ann Otorhinolaryngol Head Neck Dis. 2016;133(6):413–8.

    PubMed  CAS  Google Scholar 

  46. Nassar MN, Elmaleh M, Cohen A, Van Den Abbeele T, Wiener-Vacher SR, Teissier N. Vestibular calcification in a case of congenital Cytomegalovirus infection. Otol Neurotol. 2015;36(6):e107–9.

    PubMed  Google Scholar 

  47. Bernard S, Wiener-Vacher S, Van Den Abbeele T, Teissier N. Vestibular disorders in children with congenital Cytomegalovirus infection. Pediatrics. 2015;136(4):e887–95.

    PubMed  Google Scholar 

  48. Karltorp E, Lofkvist U, Lewensohn-Fuchs I, Lindstrom K, Eriksson Westblad M, Tear Fahnehjelm K, et al. Impaired balance and neurodevelopmental disabilities among children with congenital cytomegalovirus infection. Acta Paediatr. 2014.

  49. Wolter NE, Cushing SL, Vilchez-Madrigal LD, James AL, Campos J, Papsin BC, et al. Unilateral hearing loss is associated with impaired balance in children: a pilot study. Otol Neurotol. 2016;37(10):1589–95.

    PubMed  Google Scholar 

  50. Kletke S, Batmanabane V, Dai T, Vincent A, Li S, Gordon KA, et al. The combination of vestibular impairment and congenital sensorineural hearing loss predisposes patients to ocular anomalies, including Usher syndrome. Clin Genet. 2016.

  51. Diepeveen JE, Jensen J. Differential caloric reactions in deaf children. Acta Otolaryngol. 1968;65(6):570–4.

    PubMed  CAS  Google Scholar 

  52. luxon L, Pagarkar W. The dizzy child. In: Graham J, Scadding G, Bull P, editors. Pediatric ENT. Berlin (Heidelberg), Springer; 2008. p. 459–78.

  53. Bigelow RT, Agrawal Y. Vestibular involvement in cognition: visuospatial ability, attention, executive function, and memory. J Vestib Res. 2015;25(2):73–89.

    PubMed  Google Scholar 

  54. Beer J, Kronenberger WG, Castellanos I, Colson BG, Henning SC, Pisoni DB. Executive functioning skills in preschool-age children with cochlear implants. J Vestib Res. 2014;57(4):1521–34.

    Google Scholar 

  55. Franco ES, Panhoca I. Vestibular function in children underperforming at school. Braz J Otorhinolaryngol. 2008;74(6):815–25.

    PubMed  Google Scholar 

  56. Wiener-Vacher SR, Hamilton DA, Wiener SI. Vestibular activity and cognitive development in children: perspectives. Front Integr Neurosci. 2013;7:92.

    PubMed  PubMed Central  Google Scholar 

  57. Brandt T, Schautzer F, Hamilton DA, Bruning R, Markowitsch HJ, Kalla R, et al. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain J Neurol. 2005;128(Pt 11):2732–41.

    Google Scholar 

  58. Cohen HS, Kimball KT. Improvements in path integration after vestibular rehabilitation. J Vestib Res. 2002;12(1):47–51.

    PubMed  Google Scholar 

  59. Yardley L, Papo D, Bronstein A, Gresty M, Gardner M, Lavie N, et al. Attentional demands of continuously monitoring orientation using vestibular information. Neuropsychologia. 2002;40(4):373–83.

    PubMed  Google Scholar 

  60. Lieu JE, Tye-Murray N, Fu Q. Longitudinal study of children with unilateral hearing loss. Laryngoscope. 2012;122(9):2088–95.

    PubMed  PubMed Central  Google Scholar 

  61. Wolter NE, Gordon KA, Papsin BC, Cushing SL. Vestibular and balance impairment contributes to cochlear implant failure in children. Otol Neurotol. 2015;36(6):1029–34.

    PubMed  Google Scholar 

  62. • Sokolov M, Gordon KA, Polonenko M, Blaser SI, Papsin BC, Cushing SL. Vestibular and balance function is often impaired in children with profound unilateral sensorineural hearing loss. Hear Res. 2019;372:52–61 This study’s results demonstrate that vestibular impairment is common in children with unilateral hearing loss and theorizes that it may be a variable worth considering when assessing outcomes in this population.

    PubMed  Google Scholar 

  63. Bess FH, Tharpe AM. Unilateral hearing impairment in children. Pediatrics. 1984;74(2):206–16.

    PubMed  CAS  Google Scholar 

  64. Verhagen WI, Huygen PL, Horstink MW. Familial congenital vestibular areflexia. J Neurol Neurosurg Psychiatry. 1987;50(7):933–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Effgen SK. Effect of an exercise program on the static balance of deaf children. Phys Ther. 1981;61(6):873–7.

    PubMed  CAS  Google Scholar 

  66. Medeiros IR, Bittar RS, Pedalini ME, Lorenzi MC, Formigoni LG, Bento RF. Vestibular rehabilitation therapy in children. Otol Neurotol. 2005;26(4):699–703.

    PubMed  Google Scholar 

  67. Crowe TK, Horak FB. Motor proficiency associated with vestibular deficits in children with hearing impairments. Phys Ther. 1988;68(10):1493–9.

    PubMed  CAS  Google Scholar 

  68. Gronski MP, Bogan KE, Kloeckner J, Russell-Thomas D, Taff SD, Walker KA, et al. Childhood toxic stress: a community role in health promotion for occupational therapists. Am J Occup Ther. 2013;67(6):e148–53.

    PubMed  Google Scholar 

  69. Barra J, Marquer A, Joassin R, Reymond C, Metge L, Chauvineau V, et al. Humans use internal models to construct and update a sense of verticality. Brain. 2010;133(Pt 12):3552–63.

    PubMed  Google Scholar 

  70. Horak FB. Postural compensation for vestibular loss and implications for rehabilitation. Restor Neurol Neurosci. 2010;28(1):57–68.

    PubMed  PubMed Central  Google Scholar 

  71. Gaertner C, Bucci MP, Obeid R, Wiener-Vacher S. Subjective visual vertical and postural performance in healthy children. PLoS One. 2013;8(11):e79623.

    PubMed  PubMed Central  Google Scholar 

  72. Wong AM, Lee MY, Kuo JK, Tang FT. The development and clinical evaluation of a standing biofeedback trainer. J Rehabil Res Dev. 1997;34(3):322–7.

    PubMed  CAS  Google Scholar 

  73. Kentala E, Vivas J, Wall C 3rd. Reduction of postural sway by use of a vibrotactile balance prosthesis prototype in subjects with vestibular deficits. Ann Otol Rhinol Laryngol. 2003;112(5):404–9.

    PubMed  Google Scholar 

  74. Dozza M, Chiari L, Horak FB. Audio-biofeedback improves balance in patients with bilateral vestibular loss. Arch Phys Med Rehabil. 2005;86(7):1401–3.

    PubMed  Google Scholar 

  75. Dozza M, Chiari L, Chan B, Rocchi L, Horak FB, Cappello A. Influence of a portable audio-biofeedback device on structural properties of postural sway. J Neuroeng Rehabil. 2005;2:13.

    PubMed  PubMed Central  Google Scholar 

  76. Lackner JR. The role of posture in sound localization. Q J Exp Psychol. 1974;26(2):235–51.

    PubMed  CAS  Google Scholar 

  77. Lackner JR. Changes in auditory localization during body tilt. Acta Otolaryngol. 1974;77(1):19–28.

    PubMed  CAS  Google Scholar 

  78. Mazaheryazdi M, Moossavi A, Sarrafzadah J, Talebian S, Jalaie S. Study of the effects of hearing on static and dynamic postural function in children using cochlear implants. Int J Pediatr Otorhinolaryngol. 2017;100:18–22.

    PubMed  Google Scholar 

  79. Eisenberg LS, Nelson JR, House WF. Effects of the single-electrode cochlear implant on the vestibular system of the profoundly deaf adult. Ann Otol Rhinol Laryngol Suppl. 1982;91(2 Pt 3):47–54.

    PubMed  CAS  Google Scholar 

  80. Cushing SL, Papsin BC, Gordon KA. Incidence and characteristics of facial nerve stimulation in children with cochlear implants. Laryngoscope. 2006;116(10):1787–91.

    PubMed  Google Scholar 

  81. Black FO, Wall C 3rd, O'Leary DP, Bilger RC, Wolf RV. Galvanic disruption of vestibulospinal postural control by cochlear implant devices. J Otolaryngol. 1978;7(6):519–27.

    PubMed  CAS  Google Scholar 

  82. Bance ML, O'Driscoll M, Giles E, Ramsden RT. Vestibular stimulation by multichannel cochlear implants. Laryngoscope. 1998;108(2):291–4.

    PubMed  CAS  Google Scholar 

  83. Ito J. Influence of the multichannel cochlear implant on vestibular function. Otolaryngol Head Neck Surg. 1998;118(6):900–2.

    PubMed  CAS  Google Scholar 

  84. Parkes WJ, Gnanasegaram JJ, Cushing SL, McKnight CL, Papsin BC, Gordon KA. Vestibular evoked myogenic potential testing as an objective measure of vestibular stimulation with cochlear implants. Laryngoscope. 2017;127(2):E75–81.

    PubMed  Google Scholar 

  85. Gnanasegaram JJ, Parkes WJ, Cushing SL, McKnight CL, Papsin BC, Gordon KA. Stimulation from cochlear implant electrodes assists with recovery from asymmetric perceptual tilt: evidence from the subjective visual vertical test. Front Integr Neurosci. 2016;10:32.

    PubMed  PubMed Central  Google Scholar 

  86. Wolter NE, Gordon KA, Campos JL, Vilchez Madrigal LD, Pothier DD, Hughes CO, et al. BalanCI: head-referenced cochlear implant stimulation improves balance in children with bilateral cochleovestibular loss. Audiol Neurootol. 2020;25(1–2):60–71.

    PubMed  Google Scholar 

  87. Cushing SL, Pothier D, Hughes C, Hubbard BJ, Gordon KA, Papsin BC. Providing auditory cues to improve stability in children who are deaf. Laryngoscope. 2012;122(Suppl 4):S101–2.

    PubMed  Google Scholar 

  88. Della Santina CC, Migliaccio AA, Patel AH. A multichannel semicircular canal neural prosthesis using electrical stimulation to restore 3-d vestibular sensation. IEEE Trans Biomed Eng. 2007;54(6 Pt 1):1016–30.

    PubMed  PubMed Central  Google Scholar 

  89. Fridman GY, Della Santina CC. Progress toward development of a multichannel vestibular prosthesis for treatment of bilateral vestibular deficiency. Anat Rec (Hoboken). 2012;295(11):2010–29.

    Google Scholar 

  90. Rubinstein JT, Nie K, Bierer S, Ling L, Phillips JO. Signal processing for a vestibular neurostimulator. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6247.

    PubMed  Google Scholar 

  91. Phillips JO, Shepherd SJ, Nowack AL, Ling L, Bierer SM, Kaneko CR, et al. Longitudinal performance of a vestibular prosthesis as assessed by electrically evoked compound action potential recording. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:6128–31.

    PubMed  Google Scholar 

  92. Bierer SM, Ling L, Nie K, Fuchs AF, Kaneko CR, Oxford T, et al. Auditory outcomes following implantation and electrical stimulation of the semicircular canals. Hear Res. 2012;287(1–2):51–6.

    PubMed  PubMed Central  Google Scholar 

  93. Phillips C, Defrancisci C, Ling L, Nie K, Nowack A, Phillips JO, et al. Postural responses to electrical stimulation of the vestibular end organs in human subjects. Exp Brain Res. 2013;229(2):181–95.

    PubMed  Google Scholar 

  94. Nie K, Ling L, Bierer SM, Kaneko CR, Fuchs AF, Oxford T, et al. An experimental vestibular neural prosthesis: design and preliminary results with rhesus monkeys stimulated with modulated pulses. IEEE Trans Biomed Eng. 2013;60(6):1685–92.

    PubMed  Google Scholar 

  95. Golub JS, Ling L, Nie K, Nowack A, Shepherd SJ, Bierer SM, et al. Prosthetic implantation of the human vestibular system. Otol Neurotol. 2014;35(1):136–47.

    PubMed  PubMed Central  Google Scholar 

  96. • Boutros PJ, Schoo DP, Rahman M, Valentin NS, Chow MR, Ayiotis AI, et al. Continuous vestibular implant stimulation partially restores eye-stabilizing reflexes. JCI insight. 2019;4(22) This article reviews the current state of the impact of vestibular stimulation on restoring peripheral vestibular reflexes.

  97. Rubinstein JT, Ling L, Nowack A, Nie K, Phillips JO. Results from a second-generation vestibular implant in human subjects: diagnosis may impact electrical sensitivity of vestibular afferents. Otol Neurotol. 2020;41(1):68–77.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon L. Cushing.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Hearing Loss in Children

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazen, M., Cushing, S.L. Implications of Concurrent Vestibular Dysfunction in Pediatric Hearing Loss. Curr Otorhinolaryngol Rep 8, 267–275 (2020). https://doi.org/10.1007/s40136-020-00298-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40136-020-00298-3

Keywords

Navigation