Skip to main content

Advertisement

Log in

Rapid Cardiac MRI Protocols: Feasibility and Potential Applications

  • Cardiovascular Imaging (K Ordovas, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

This article provides a review of how rapid Cardiac Magnetic Resonance (CMR) has been used successfully in different clinical settings, outlining the current role of CMR and the unique, incremental information provided in the care of the patient. The article will provide a review of the abbreviated protocols used, future developments and ways to optimize these protocols. A major emphasis of the application of this technology is in Low and Middle-Income Countries (LMICs) where Cardiovascular disease (CVD) is the major cause of morbidity and mortality, however the principles and protocols can be applied across a broad array of clinical platforms.

Recent Findings

By using a truncated protocol for CMR, most scans can be performed in under 30 minutes, with an average time of 18 minutes for scans which evaluates function and fibrosis (contrast study). A study can be performed within 8 minutes for the assessment of cardiac iron overload (non-contrast study). Rapid CMR can alter clinical management in up to 56% of patients. Rapid CMR protocols do not need state-of-the-art equipment or software. These protocols can be implemented in many centers around the world with appropriate exposure and training.

Summary

CMR can be performed rapidly without compromising the diagnostic yield of the technique. Rapid CMR can reduce the costs of performing CMR, increase throughput through the scanner and potentially increase the use of the modality in centers worldwide. This could lead to the improvement of clinical care through superior diagnostics and better targeting of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: •• Of major importance

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):447–54.

    Article  PubMed  Google Scholar 

  2. Lauer MS. Cardiovascular science in the service of national strength. JAMA. 2011;306(19):2145–6.

    Article  CAS  PubMed  Google Scholar 

  3. •• Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–e492. This study demonstrated the higher prevalence of cardiovascular mortality in LMICs.

    Article  PubMed  Google Scholar 

  4. Gaziano TA, Bitton A, Anand S, Abrahams-Gessel S, Murphy A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Probl Cardiol. 2010;35(2):72–115.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yusuf S, Rangarajan S, Teo K, Islam S, Li W, Liu L, et al. Cardiovascular risk and events in 17 low-, middle-, and high-income countries. N Engl J Med. 2014;371(9):818–27.

    Article  CAS  PubMed  Google Scholar 

  6. Sliwa K, Ntusi N. Battling cardiovascular diseases in a perfect storm. Circulation. 2019;139(14):1658–60.

    Article  PubMed  Google Scholar 

  7. Ntusi NA. Cardiovascular magnetic resonance imaging in rheumatic heart disease. Cardiovasc J Afr. 2018;29(3):135–6.

    CAS  PubMed  Google Scholar 

  8. Pennell DJ. Cardiovascular magnetic resonance. Circulation. 2010;121(5):692–705.

    Article  PubMed  Google Scholar 

  9. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200.

    Article  PubMed  Google Scholar 

  10. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Cardiac Fail. 2017;23(8):628–51.

    Article  Google Scholar 

  11. Modell B, Khan M, Darlison M, Westwood MA, Ingram D, Pennell DJ. Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2008;10:42.

    Article  PubMed  PubMed Central  Google Scholar 

  12. •• Abdel-Gadir A, Vorasettakarnkij Y, Ngamkasem H, Nordin S, Ako EA, Tumkosit M, et al. Ultrafast magnetic resonance imaging for iron quantification in thalassemia participants in the developing world: the TIC-TOC Study (Thailand and UK International Collaboration in Thalassaemia Optimising Ultrafast CMR). Circulation. 2016;134(5):432–4. This study demonstrated that Rapid CMR with a non-contrast protocol can be used cost-effectively and efficiently to change the management of patients with beta-thalassemia by assessing myocardial and hepatic iron levels.

    Article  PubMed  PubMed Central  Google Scholar 

  13. •• Menacho K, Ramirez S, Segura P, Nordin S, Abdel-Gadir A, Illatopa V, et al. INCA (Peru) study: impact of non-invasive cardiac magnetic resonance assessment in the developing world. J Am Heart Assoc. 2018;7(17):e008981. This study demonstrated that Rapid CMR using contrast can be used cost-effectively and efficiently to change the management of patients with cardiomyopathies.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cheitlin MD, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, Davis JL, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary Article. Circulation. 2003;108(9):1146–62.

    Article  PubMed  Google Scholar 

  15. •• Karamitsos TD, Francis JM, Myerson S, Selvanayagam JB, Neubauer S. The role of cardiovascular magnetic resonance imaging in heart failure. J Am Coll Cardiol. 2009;54(15):1407–24. Good review of how CMR can be used in the differential diagnosis and management of ischemic and non ischemic cardiomyopathies.

    Article  PubMed  Google Scholar 

  16. •• Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson. 2017;19(1):75. A practical guideline for the use of Parametric mapping in CMR.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson. 2013;15:91.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol. 2018;72(24):3158–76.

    Article  PubMed  Google Scholar 

  19. Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Buechel ERV, et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson. 2013;15(1):91.

    Article  Google Scholar 

  20. • Kwong RY, Petersen SE, Schulz-Menger J, Arai AE, Bingham SE, Chen Y, et al. The global cardiovascular magnetic resonance registry (GCMR) of the society for cardiovascular magnetic resonance (SCMR): its goals, rationale, data infrastructure, and current developments. J Cardiovasc Magn Reson. 2017;19(1):23. Registry about the current practice of CMR in the world.

    Article  PubMed  PubMed Central  Google Scholar 

  21. • Bruder O, Wagner A, Lombardi M, Schwitter J, van Rossum A, Pilz G, et al. European cardiovascular magnetic resonance (EuroCMR) registry—multi national results from 57 centers in 15 countries. J Cardiovasc Magn Reson. 2013;15:9. Registry about the current practice of CMR in Europe.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Herrey AS, Francis JM, Hughes M, Ntusi NAB. Cardiovascular magnetic resonance can be undertaken in pregnancy and guide clinical decision-making in this patient population. Eur Heart J Cardiovasc Imaging. 2019;20(3):291–7.

    Article  PubMed  Google Scholar 

  23. • Kramer CM. Potential for rapid and cost‐effective cardiac magnetic resonance in the developing (and Developed) world. J Am Heart Assoc. 2018;7(17):e010435. Editorial paper, discussing the potential impact of a rapid CMR protocol in LMICs to the benefit of the patients.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Organization WH. Global Health Observatory Data Repository 2016 [updated 09/03/2016. Available from: https://apps.who.int/gho/data/view.main.302010.

  25. •• Porter JB, Garbowski M. The pathophysiology of transfusional iron overload. Hematol Oncol Clin North Am. 2014;28(4):683–701, vi. Good review of the pathophysiology, diagnosis and therapy of cardiomyopathy secondary to iron overload.

  26. •• Pennell DJ, Udelson JE, Arai AE, Bozkurt B, Cohen AR, Galanello R, et al. Cardiovascular function and treatment in beta-thalassemia major: a consensus statement from the American Heart Association. Circulation. 2013;128(3):281–308. A good review article for treatment of iron overload involving the myocardium.

  27. Chouliaras G, Berdoukas V, Ladis V, Kattamis A, Chatziliami A, Fragodimitri C, et al. Impact of magnetic resonance imaging on cardiac mortality in thalassemia major. J Magn Reson Imaging. 2011;34(1):56–9.

    Article  PubMed  Google Scholar 

  28. Aydinok Y, Porter JB, Piga A, Elalfy M, El-Beshlawy A, Kilinc Y, et al. Prevalence and distribution of iron overload in patients with transfusion-dependent anemias differs across geographic regions: results from the CORDELIA study. Eur J Haematol. 2015;95(3):244–53.

    Article  CAS  PubMed  Google Scholar 

  29. Verissimo MP, Loggetto SR, Fabron Junior A, Baldanzi GR, Hamerschlak N, Fernandes JL, et al. Brazilian Thalassemia Association protocol for iron chelation therapy in patients under regular transfusion. Rev Bras Hematol Hemoter. 2013;35(6):428–34.

    PubMed  PubMed Central  Google Scholar 

  30. Musallam KM, Angastiniotis M, Eleftheriou A, Porter JB. Cross-talk between available guidelines for the management of patients with beta-thalassemia major. Acta Haematol. 2013;130(2):64–73.

    Article  CAS  PubMed  Google Scholar 

  31. Alam MH, Auger D, McGill L-A, Smith GC, He T, Izgi C, et al. Comparison of 3 T and 1.5 T for T2* magnetic resonance of tissue iron. J Cardiovasc Magn Reson. 2016;18(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fernandes JL, Sampaio EF, Verissimo M, Pereira FB, da Silva JA, de Figueiredo GS, et al. Heart and liver T2 assessment for iron overload using different software programs. Eur Radiol. 2011;21(12):2503–10.

    Article  PubMed  Google Scholar 

  33. Fernandes JL, Fioravante LAB, Verissimo MP, Loggetto SR. A free software for the calculation of T2* values for iron overload assessment. Acta Radiol. 2017;58(6):698–701.

    Article  PubMed  Google Scholar 

  34. •• He T, Gatehouse PD, Smith GC, Mohiaddin RH, Pennell DJ, Firmin DN. Myocardial T2* measurements in iron-overloaded thalassemia: an in vivo study to investigate optimal methods of quantification. Magn Reson Med. 2008;60(5):1082–9. Important paper looking at how to evaluate T2* in patients with severe iron overload involving the myocardium.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Viprakasit V, Ajlan A, Aydinok Y, Al Ebadi BAA, Dewedar H, Ibrahim AS, et al. MRI for the diagnosis of cardiac and liver iron overload in patients with transfusion-dependent thalassemia: an algorithm to guide clinical use when availability is limited. Am J Hematol. 2018;93(6):E135–E137137.

    Article  PubMed  Google Scholar 

  36. •• Fernandes JL, Siqueira MHA, Nobrega de Oliveira KT, Avila LF, Gottlieb I, Lopes MU, et al. Use of an accelerated protocol for rapid analysis of iron overload in the heart and liver: the all iron detected (AID) multicenter study. J Cardiovasc Magn Reson. 2015;17(Suppl 1):O62-O. This multicenter study demonstrated that Rapid CMR with a non-contrast protocol could be used cost-effectively and efficiently to change the management of patients with beta-thalassemia.

    Article  Google Scholar 

  37. Wong TC, Piehler K, Puntil KS, Moguillansky D, Meier CG, Lacomis JM, et al. Effectiveness of late gadolinium enhancement to improve outcomes prediction in patients referred for cardiovascular magnetic resonance after echocardiography. J Cardiovasc Magn Reson. 2013;15:6.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Knobelsdorff-Brenkenhoff F, Schulz-Menger J. Role of cardiovascular magnetic resonance in the guidelines of the European Society of Cardiology. J Cardiovasc Magn Reson. 2016;18(1):6.

    Article  Google Scholar 

  39. Knobelsdorff-Brenkenhoff F, Pilz G, Schulz-Menger J. Representation of cardiovascular magnetic resonance in the AHA/ACC guidelines. J Cardiovasc Magn Reson. 2017;19(1):70.

    Article  Google Scholar 

  40. Baroni M, Nava S, Quattrocchi G, Milazzo A, Giannattasio C, Roghi A, et al. Role of cardiovascular magnetic resonance in suspected cardiac amyloidosis: late gadolinium enhancement pattern as mortality predictor. Neth Heart J. 2018;26(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  41. •• Greulich S, Deluigi CC, Gloekler S, Wahl A, Zurn C, Kramer U, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging. 2013;6(4):501–11. In this paper the presence of myocardial scar was the best predictor of lethal events, underscoring the importance of CMR in prognosis as well as diagnosis. CMR had additive value in 65% of heart failure patients.

    Article  PubMed  Google Scholar 

  42. Nordin S, Kozor R, Medina-Menacho K, Abdel-Gadir A, Baig S, Sado DM, et al. Proposed stages of myocardial phenotype development in fabry disease. JACC Cardiovasc Imaging. 2018;12(8 Pt 2):1673–83.

    PubMed  Google Scholar 

  43. Abbasi SA, Ertel A, Shah RV, Dandekar V, Chung J, Bhat G, et al. Impact of cardiovascular magnetic resonance on management and clinical decision-making in heart failure patients. J Cardiovasc Magn Reson. 2013;15:89.

    Article  PubMed  PubMed Central  Google Scholar 

  44. •• Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D, et al. Recent advances in cardiovascular magnetic resonance: techniques and applications. Circ Cardiovasc Imaging. 2017;10(6):e003951. Good review of the recent advances in CMR.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Christodoulou AG, Shaw JL, Nguyen C, Yang Q, Xie Y, Wang N, et al. Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging. Nat Biomed Eng. 2018;2(4):215–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. D'Angelo T, Grigoratos C, Mazziotti S, Bratis K, Pathan F, Blandino A, et al. High-throughput gadobutrol-enhanced CMR: a time and dose optimization study. J Cardiovasc Magn Reson. 2017;19(1):83.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Menacho Medina Katia ea. Improving cardiac magnetic resonance access in Developing Countries: Rapid CMR. In: Sessions SnAS, editor. Society of Cardiovascular Magnetic Resonance 22nd Annual Scientifc Sessions; 08/02/2019; Seattle, WA USA2019.

  48. •• Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379(9814):453–60. One of the largest prospective studes evaluating the diagnostic accuracy of Stress perfusion CMR against SPECT.

    Article  PubMed  PubMed Central  Google Scholar 

  49. •• Nagel E, Greenwood JP, McCann GP, Bettencourt N, Shah AM, Hussain ST, et al. Magnetic resonance perfusion or fractional flow reserve in coronary disease. N Engl J Med. 2019;380(25):2418–28. Randomized comparison of invasive FFR against Stress perfusion MRI.

    Article  PubMed  Google Scholar 

  50. Hendel RC, Friedrich MG, Schulz-Menger J, Zemmrich C, Bengel F, Berman DS, et al. CMR first-pass perfusion for suspected inducible myocardial ischemia. JACC Cardiovasc Imaging. 2016;9(11):1338–48.

    Article  PubMed  Google Scholar 

  51. Herzog BA Greenwood JP, Plein S, Cardiovascular magnetic resonance pocket guide. In: European Association of Cardiovascular Imaging EACVI ESoC, editor. 2013.

  52. Budjan J, Haubenreisser H, Henzler T, Sudarski S, Schmidt M, Doesch C, et al. Rapid functional cardiac imaging after gadolinium injection: evaluation of a highly accelerated sequence with sparse data sampling and iterative reconstruction. Sci Rep. 2016;6:38236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wildgruber M, Settles M, Herrmann K, Beer AJ, Rummeny EJ, Huber AM. Inversion-recovery single-shot cardiac MRI for the assessment of myocardial infarction at 1.5 T with a dedicated cardiac coil. The British journal of radiology. 2012;85(1017):e709–e715715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Torlasco C, Cassinerio E, Roghi A, Faini A, Capecchi M, Abdel-Gadir A, et al. Role of T1 mapping as a complementary tool to T2* for non-invasive cardiac iron overload assessment. PLoS ONE. 2018;13(2):e0192890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017;35(8):893–911.

    Article  PubMed  Google Scholar 

  56. Wang C-L, Chu P-H. Echocardiography for evaluation of oncology therapy-related cardiotoxicity. Acta Cardiol Sin. 2016;32(5):560–4.

    PubMed  PubMed Central  Google Scholar 

  57. Steen H, Montenbruck M, Esch S, Schwarz A, Kelle S, Wuelfing P, et al. P411Accuracy of cardiotoxicity detection with fast strain-encoded CMR vs echocardiography. Eur Heart J. 2019;20(Supplement_2):jez118.

    Google Scholar 

  58. •• Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson. 2013;15:35. Important expert consensus statement looking at standardized reporting in CMR.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Muthurangu V, Lurz P, Critchely JD, Deanfield JE, Taylor AM, Hansen MS. Real-time assessment of right and left ventricular volumes and function in patients with congenital heart disease by using high spatiotemporal resolution radial k-t SENSE. Radiology. 2008;248(3):782–91.

    Article  PubMed  Google Scholar 

  60. Steeden JA, Kowalik GT, Tann O, Hughes M, Mortensen KH, Muthurangu V. Real-time assessment of right and left ventricular volumes and function in children using high spatiotemporal resolution spiral bSSFP with compressed sensing. J Cardiovasc Magn Reson. 2018;20(1):79.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Piccini D, Feng L, Bonanno G, Coppo S, Yerly J, Lim RP, et al. Four-dimensional respiratory motion-resolved whole heart coronary MR angiography. Magn Reson Med. 2017;77(4):1473–84.

    Article  PubMed  Google Scholar 

  62. Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhall CJ, Ebbers T, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson. 2015;17:72.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Walheim J, Dillinger H, Kozerke S. Multipoint 5D flow cardiovascular magnetic resonance - accelerated cardiac- and respiratory-motion resolved mapping of mean and turbulent velocities. J Cardiovasc Magn Reson. 2019;21(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Moses H 3rd, Matheson DH, Dorsey ER, George BP, Sadoff D, Yoshimura S. The anatomy of health care in the United States. JAMA. 2013;310(18):1947–63.

    Article  CAS  PubMed  Google Scholar 

  65. Douglas PS, Cerqueira MD, Berman DS, Chinnaiyan K, Cohen MS, Lundbye JB, et al. The future of cardiac imaging: report of a think tank convened by the American College of Cardiology. JACC Cardiovasc Imaging. 2016;9(10):1211–23.

    Article  PubMed  Google Scholar 

  66. Porter ME. What is value in health care? N Engl J Med. 2010;363(26):2477–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

KM is funded by The Peruvian Scientific, Technological Development and Technological Innovation (FONDECYT) and Global Engagement Office, University College London. JMW receives support from the National Institute for Health Research University College London Hospitals Biomedical Research Centre and from the UCLH Charity—Greenbaum/ McClean Legacy. NABN gratefully acknowledges funding support from the National Research Foundation, South African Medical Research Council, GlaxoSmithKline, Newton Foundation (UK), Technology Innovation Fund, Harry Crossley Foundation, American Heart Association, US National Institutes of Health, Bill and Melinda Gates Foundation, and Lily and Ernst Hausmann Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Jacob.

Ethics declarations

Conflict of interest

All authors declare no potential conflicts of interest that are relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Cardiovascular Imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menacho-Medina, K., Ntusi, N.A.B., Moon, J.C. et al. Rapid Cardiac MRI Protocols: Feasibility and Potential Applications. Curr Radiol Rep 8, 2 (2020). https://doi.org/10.1007/s40134-020-0344-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-020-0344-6

Keyword

Navigation