Skip to main content
Log in

3-D Elasto-Plastic SEM Approach for Pseudo-Static Seismic Slope Stability Charts for Natural Slopes

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

This paper briefly discusses on spectral element method, one of the recent method applied to evaluate the stability of natural slope. The parametric study is made to prepare stability charts in 3-D for the different seismic coefficient in case of dry and fully saturated soil slope conditions. This paper utilizes common soil engineering properties under the unified soil classification system (USCS). Stability charts of some representative soil slopes along with USCS material models can be useful to analyze the stability of slopes for general purposes. This paper analyzes the stability of dry and fully saturated soil slopes with horizontal seismic pseudo-static coefficient, K h , of 0.1, and 0.2 to prepare the stability charts. It is believed that dry and fully saturated soil slope conditions are the best and worst scenario of the stability and seismic coefficient, K h , of 0.1, and 0.2 are sufficiently addressed the seismic slope instability of severe damages. The results show that the stability condition of fully saturated soil slope is equivalent to dry seismic slope instability of pseudo-static coefficient, K h , 0.2 in most of the cases. This paper employs two roots related factors: (1) root cohesion, C r , of 0–20 kN/m2; (2) root zone h r , of 2.0 m to represent the vegetated soil slope stability. A significant change in safety factor is observed as per the soil slope models as well as soil material models including root related parameters. A linear relationship of factor of safety is found with root-cohesion up to, C r , of 20 kN/m2. It may not be true for lower and higher values of root-cohesions. This paper also presents a typical numerical problem and solution to illustrate the application of design charts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

K h :

Horizontal seismic pseudo-static coefficient

U :

Global displacement vector

K :

Global stiffness vector

F :

Global force vector

K e :

Elemental stiffness matrix

F e :

Elemental force matrix

\( f_{e}^{G} \) :

Elemental matrices of gravity force

\( f_{e}^{T} \) :

Elemental matrices of traction force

\( f_{e}^{EQ} \) :

Elemental matrices of pseudo-static earthquake load

γ e :

Unit weight of the slope material (kN/m3)

ϕ T :

Transpose of interpolation function matrix

K EQ :

Pseudo-static earthquake coefficient

C ijkl :

Elasticity tensor for linearly elastic isotropic material representing soil-root matrix continuum

ρ :

Mass density

W i :

Weight function of soil-root material

ρ i :

Density function of soil-root material

W r :

Weight function of roots

W s :

Weight function of soil

ρ r :

Density of roots

ρ s :

Density of soils

a r :

Root area ratio (RAR)

\( \varphi^{\prime}_{f} \) :

Factored friction component (°)

\( c^{\prime}_{f} \) :

Factored cohesive component (kN/m2)

C r :

Additional root cohesion

h r :

Root zone

β :

Slope angle

SRF :

Strength reduction factor

References

  1. Abe K, Iwamoto M (1986) Preliminary experiment on shear in soil layers with a large direct-shear apparatus. J Jpn For Soc 68(2):61–65

    Google Scholar 

  2. Abe K, Iwamoto M (1986) An evaluation of tree-root effect on slope stability by tree strength. J Jpn For Soc 68(12):505–510

    Google Scholar 

  3. Abernethy B, Rutherfurd I (2001) The distribution and strength of riparian tree roots in relation to river bank reinforcement. Hydrol Process 15:63–79

    Article  Google Scholar 

  4. Babuska I, Suri M (1990) The p- and h-p versions of the finite element method, an overview. Comput Methods Appl Mech Eng 80(1–3):5–26

    Article  MATH  MathSciNet  Google Scholar 

  5. Baker R (2003) A second look at Taylor’s stability chart. J Geotech Geoenviron Eng 129(12):1102–1108

    Article  Google Scholar 

  6. Baker R, Shukha R, Operstein V, Frydman S (2006) Stability charts for pseudo-static slope stability analysis. Soil Dyn Earthq Eng 26:813–823

    Article  Google Scholar 

  7. Buchanan P, Savigny KW (1990) Factors controlling debris avalanche initiation. Can Geotech J 27:659–675

    Article  Google Scholar 

  8. Budhu M (1999) Soil mechanics and foundation. Wiley, New York, p 585

    Google Scholar 

  9. Chen Z, Mi H, Zhang F, Wang X (2003) A simplified method for 3D slope stability analysis. Can Geotech J 40(3):675–683

    Article  Google Scholar 

  10. Chen JX, Ke PZ, Zhang G (2007) Slope stability analysis by strength reduction elasto-plastic FEM. Key Eng Mater 345–346:625–628

    Google Scholar 

  11. Coppin NJ, Richards IG (1990) Use of vegetation in civil engineering. Butterworth, London

    Google Scholar 

  12. Corps of engineers (1970) Slope stability manual EM-1110-2-1902. Department of Army, Office of the Chief of Engineers, Washington, DC

  13. Das BM (2003) Geotechnical earthquake engineering. Pearson Education, Delhi

    Google Scholar 

  14. Dawson EM, Roth WH, Drescher A (1999) Slope stability analysis by strength reduction. Geotechnique 49(6):835–840

    Article  Google Scholar 

  15. Deoja B, Dhital M, Thapa B, Wagner A (1991) Mountain risk engineering handbook—part I subject background. International Center for Integrated Mountauin Development ICIMOD, Kathmandu, p 557

    Google Scholar 

  16. Endo T, Tsuruta T (1969) Effects of tree root upon the shearing strengths of soils. In: Annual report of the Hokkaido branch. Tokyo Forest Experiment Station, Tokyo, pp 167–179

  17. Gavin K, Xue J (2010) Design charts for the stability analysis of unsaturated soil slopes. Geotech Geol Eng 28(1):79–90

    Article  Google Scholar 

  18. Genet M, Kokutse NK, Stokes A, Fourcaud T, Cai X, Ji J, Mickovski SB (2008) Root reinforced in plantations of Cryptomeria japonica D. Don: effect of tree age and stand structure on slope stability. Forest Ecol Manag 256(8):1517–1526

    Article  Google Scholar 

  19. Gharti HN, Komatitsch D, Oye V, Martin R, Tromp J (2012) Application of an elasto-plastic spectral-element method to 3D slope stability analysis. Int J Numer Methods Eng 91(1):1–26

    Article  MATH  MathSciNet  Google Scholar 

  20. Gray DH, Megahan WF (1981) Forest vegetation removal and slope stability in the Idaho Batholith. Research paper INT-271, Intermountain Forest and Range Experiment Station, Ogden, UT

  21. Gray DH, Sotir RD (1996) Biotechnical soil engineering slope stabilization: a practical guide for erosion control. Wiley, New York

    Google Scholar 

  22. Griffiths DV, Marquez RM (2007) Three-dimensional slope stability analysis by elasto-plastic finite elements. Geotechnique 57(6):537–546

    Article  Google Scholar 

  23. Hathaway RL, Penny D (1975) Root strength in some Populus and Salix clones. N Z J Bot 13:333–344

    Article  Google Scholar 

  24. Huang MS, Jia CQ (2009) Strength reduction FEM in stability analysis of soil slope subjected to transient unsaturated seepage. Comput Geotech 36(1–2):93–101

    Article  Google Scholar 

  25. Indiana University (2013) The open MPI project 2004–2013: open source high performance computing. Bloogminton, IN, USA. http://www.open-mpi.org

  26. Ke Z, Ping C, Yao LZ, Hui-hua H, Dao-ping G (2011) Simulation analysis on three-dimensional slope failure under different conditions. Trans Nonferr Met Soc China 21(11):2490–2502

    Article  Google Scholar 

  27. Kitware inc (2013) Paraview. Clifton Park, USA. http://www.paraview.org

  28. Komatitsch D, Tromp J (1999) Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys J Int 139(3):806–822

    Article  Google Scholar 

  29. Komatitsch D, Tromp J (2002) Spectral-element simulations of global seismic wave propagation- I. Validation. Geophys J Int 149(2):390–412

    Article  Google Scholar 

  30. Krahenbuhl J, Wagner A (1983) Survey, design, and construction of trail suspension bridges for remote areas, SKAT. Swiss Center for Appropriate Technology, St. Gallen

    Google Scholar 

  31. Kulhawy FH (1990) Manual on estimating soil properties for foundation design. EPRI, Palo Alto, p 306

    Google Scholar 

  32. Leshchinsky D, San KC (1993) Pseudo-static slope stability analysis: design charts. J Geotech Eng 120(9):1514–1531

    Article  Google Scholar 

  33. Matsui T, San KC (1992) Finite element slope stability analysis by strength reduction technique. Soils Found 32(1):59–70

    Article  Google Scholar 

  34. Monley GJ, Wu JTH (1993) Tensile reinforcement effects on bridge approach settlement. J Geotech Eng ASCE 119(4):749–762

    Article  Google Scholar 

  35. O’ Loughlin CL, Watson A (1979) Root-wood strength deterioration in Radiata Pine after clearfelling. N Z J For Sci 39(3):284–293

    Google Scholar 

  36. O’loughlin CL (1974) The effects of timber removal on the stability of forest soils. J Hydrol N Z 13:121–134

    Google Scholar 

  37. Pasquetti R, Rapetti F (2006) Spectral element methods on unstructured meshes: comparisons and recent advances. J Sci Comput 27(1–3):377–387

    Article  MATH  MathSciNet  Google Scholar 

  38. Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54(3):468–488

    Article  MATH  MathSciNet  Google Scholar 

  39. Pellegrini F (2010) SCOTCH and LIBSCOTCH 5.1 user’s guide

  40. Pellegrini F, Roman J (1996) SCOTCH: a software package for static mapping by dual recursive bipartitioning of process and architecture graphs. Lect Notes Comput Sci 1067:493–498

    Article  Google Scholar 

  41. Peter D, Komatitsch D, Luo Y, Martin R, Le Goff N, Casarotti E, Le Loher P, Magnoni F, Gosselet P, Rey C (2007) Non-overlapping domain decomposition methods in structural mechanics. Arch Comput Methods Eng 13(4):515–572

    Google Scholar 

  42. Pyke R (2010) Selection of seismic coefficients for use in pseudo-static slope stability analyses. http://www.tagasoft.com

  43. Radoslaw L, Michalowski F (2002) Stability charts for uniform slopes. J Geotech Geoenviron Eng 128(4):351–355

    Article  Google Scholar 

  44. Radoslaw L, Michalowski F (2010) Limit analysis and stability charts for 3D slope failures. J Geotech Geoenviron Eng 136(4):583–593

    Article  Google Scholar 

  45. Radoslaw L, Michalowski F, Tabetha Martel SM (2011) Stability charts for 3D failures of steep slopes subjected to seismic excitation. J Geotech Geoenviron Eng 137(2):183–189

    Article  Google Scholar 

  46. Riestenberg MM, Sovonick-Dunford S (1983) The role of woody vegetation in stabilishing slopes in the Cincinnati area, Ohio. Geol Soc Am Bull 94:506–518

    Article  Google Scholar 

  47. Sandia national laboratory (2012) CUBIT 13.0 Users documentation. http://www.cubit.sandia.gov

  48. Schiechtl HM (1980) Bioengineering for land reclamation and conservation. University of Alberta Press, Edmonton, p 404

    Google Scholar 

  49. Schwab C (1999) P- and hp-finite element methods: theory and applications to solid and fluid mechanics. Oxford University Press, USA, p 392

  50. Serini G (1994) 3-D large-scale wave propagation modeling by spectral-element method on Cray T3E multiprocessor. Comput Methods Appl Mech Eng 164(1–2):235–247

    Google Scholar 

  51. Shepherd J, Johnson C (2008) Hexahedral mesh generation constraints. Eng Comput 24(3):195–213

    Article  Google Scholar 

  52. Sidle RC, Swanston DN (1982) Analysis of a small debris slide in coastal Alaska. Can Geotech J 19:167–174

    Article  Google Scholar 

  53. Swanston DN (1970) Mechanics of debris avalanching in shallow till soils of south Alaska. US Department of Agriculture Forest Research Paper, PNW-103, Pacific and Northwest forest and range experimental station, Portland, OR

  54. Tautges TJ (2001) The generation of hexahedral meshes for assembly geometry: survey and progress. Int J Numer Methods Eng 50(12):2617–2642

    Article  MATH  Google Scholar 

  55. Taylor MA, Wingate BA (2000) A generalized diagonal mass matrix spectral element method for nonquadrilateral elements. Appl Numer Math 33(1–4):259–265

    Article  MATH  MathSciNet  Google Scholar 

  56. Terzaghi K (1950) Mechanism of landslides. In: Paige S (ed) Applications of geology to engineering practices (Berkeley volume). Geological Society of America, Washington, DC, pp 83–123

    Google Scholar 

  57. Tiwari RC, Bhandary NP, Yatabe R, Bhat DR (2013) New numerical scheme in the finite element method for evaluating root-reinforcement effect on soil slope stability. Geotechnique 63(2):129–139

    Article  Google Scholar 

  58. Tromp J, Komatitsch D, Liu Q (2008) Spectral-element and adjoint methods in seismology. Commun Comput Phys 3(1):1–32

    MATH  Google Scholar 

  59. Waldron LJ (1977) The shear resistance of root-permeated homogenous and stratified soil. Soil Sci Soc Am J 41(5):843–849

    Article  Google Scholar 

  60. Waldron LJ, Dakessian S (1981) Soil reinforcement by root: calculation of increased soil shear resistance from root properties. Soil Sci 132(6):427–435

    Article  Google Scholar 

  61. Waldron LJ, Dakessian S, Nemson JA (1983) Shear resistance enhancement of 1.22-meter diameter soil cross sections by pine and alfalfa roots. Soil Sci Soc Am J 47:9–14

    Article  Google Scholar 

  62. Wei WB, Cheng YM, Li L (2009) Three-dimensional slope failure analysis by the strength reduction and limit equilibrium methods. Comput Geotech 36(1–2):70–80

    Article  Google Scholar 

  63. Wu TH, MCKinnell WP, Swanston DN (1979) Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can Geotech J 16(1):19–33

    Article  Google Scholar 

  64. Wu TH, Macomber RM, Erb RT, Beal PE (1988) Study of soil-root interactions. J Geotech Eng (ASCE) 114:1351–1375

    Article  Google Scholar 

  65. Wu TH, Beal PE, Lan C (1988) In-situ shear test of soil-root systems. J Geotech Eng (ASCE) 114:1376–1394

    Article  Google Scholar 

  66. Zaman M, Gopalasingam A, Laguros JG (1991) Consolidation settlement of bridge approach foundation. J Geotech Eng 117(2):219–239

    Article  Google Scholar 

  67. Ziemer RR (1981) The role of vegetation of the stability of forested slopes. IUFRO 17th world congress proceedings-reference-exposes, pp 297–308

Download references

Acknowledgments

The authors would like to acknowledge to the suggestions provided by Prof. Padma Bahadur Khadka from Institute of Engineering, Tribhuvan University, Nepal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Tiwari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, R.C., Bhandary, N.P. & Yatabe, R. 3-D Elasto-Plastic SEM Approach for Pseudo-Static Seismic Slope Stability Charts for Natural Slopes. Indian Geotech J 44, 305–321 (2014). https://doi.org/10.1007/s40098-013-0086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-013-0086-y

Keywords

Navigation