Skip to main content
Log in

Eco-friendly graphene oxide-based magnesium oxide nanocomposite synthesis using fungal fermented by-products and gamma rays for outstanding antimicrobial, antioxidant, and anticancer activities

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Green synthesis of nanoparticles is an eco-friendly new approach and an attractive field in biomedical applications. In the current investigation, a novel green synthesis of magnesium oxide nanoparticles (MgO NPs) and graphene oxide based magnesium oxide nanocomposite (GO/MgO nanocomposite) is accomplished using the fungal fermented agricultural by-products and gamma irradiation. MgO NPs are synthesized using wheat bran fermented by Erysiphe cichoracearum and gamma irradiation at 30.0 kGy. GO/MgO nanocomposite is produced efficiently at 20.0 kGy. The characterization of the synthesized nanoparticles is executed by FTIR, XRD, DLS, SEM, and TEM. The mean average diameter of MgO NPs is 14.5 nm and doped uniformly on the surface of the graphene oxide sheets. An excellent antioxidant activity has been shown by GO/MgO nanocomposite (500 μg/mL) of 56.71%. MgO NPs and GO/MgO nanocomposite prove a great antimicrobial effect against all the tested microbial human pathogens. Escherichia coli and Candida albicans are mostly inhibited by MgO NPs and GO/MgO nanocomposite. MgO NPs and GO/MgO nanocomposite show great cytotoxicity against Prostate cancer cell lines. IC50 of MgO NPs and GO/MgO nanocomposite against the Prostate cancer cell lines (PC3) are 86.7 μg/mL and 11.17 μg/mL, respectively. Owing to the strong attachment of MgO NPs and GO construction, the GO/MgO nanocomposite could be used as a promising candidate for new and potent antimicrobial and anticancer considered successful future applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xiao, Y., Liu, Y., Wang, X., Li, M., Lei, H., Xu, H.: Cellulose nanocrystals prepared from wheat bran: characterization and cytotoxicity assessment. Int. J. Biol. Macromol. 140, 225–233 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. El-Batal, A.I., El-Sayyad, G.S., Mosallam, F.M., Fathy, R.M.: Penicillium chrysogenum-mediated mycogenic synthesis of copper oxide nanoparticles using gamma rays for in vitro antimicrobial activity against some plant pathogens. J. Clust. Sci. 31(1), 79–90 (2020)

    Article  CAS  Google Scholar 

  3. He, Y., Ingudam, S., Reed, S., Gehring, A., Strobaugh, T.P., Irwin, P.: Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J. Nanobiotechnol. 14(1), 54 (2016)

    Article  CAS  Google Scholar 

  4. Abdel-Rahman, H.A., Awad, E.H., Fathy, R.M.: Effect of modified nano zinc oxide on physico-chemical and antimicrobial properties of gamma-irradiated sawdust/epoxy composites. J. Compos. Mater. 54(3), 331–343 (2020)

    Article  CAS  Google Scholar 

  5. Raghunath, A., Perumal, E.: Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int. J. Antimicrob. Agents 49(2), 137–152 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. Gratton, S.E., Ropp, P.A., Pohlhaus, P.D., Luft, J.C., Madden, V.J., Napier, M.E., DeSimone, J.M.: The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. 105(33), 11613–11618 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prabha, S., Arya, G., Chandra, R., Ahmed, B., Nimesh, S.: Effect of size on biological properties of nanoparticles employed in gene delivery. Artif. Cells Nanomed. Biotechnol. 44(1), 83–91 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. Mirzaei, H., Davoodnia, A.: Microwave assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of hantzsch 1, 4-dihydropyridines. Chin. J. Catal. 33(9–10), 1502–1507 (2012)

    Article  CAS  Google Scholar 

  9. Di, D.-R., He, Z.-Z., Sun, Z.-Q., Liu, J.: A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomed. Nanotechnol. Biol. Med. 8(8), 1233–1241 (2012)

    Article  CAS  Google Scholar 

  10. Cai, L., Chen, J., Liu, Z., Wang, H., Yang, H., Ding, W.: Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front. Microbiol. 9, 790 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mangalampalli, B., Dumala, N., Grover, P.: Allium cepa root tip assay in assessment of toxicity of magnesium oxide nanoparticles and microparticles. J. Environ. Sci. 66, 125–137 (2018)

    Article  Google Scholar 

  12. Gurunathan, S., Jeyaraj, M., Kang, M.-H., Kim, J.-H.: Graphene oxide-platinum nanoparticle nanocomposites: a suitable biocompatible therapeutic agent for prostate cancer. Polymers 11(4), 733 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  13. Mondal, A., Jana, N.R.: Graphene-nanoparticle composites and their applications in energy, environmental and biomedical science. Rev. Nanosci. Nanotechnol. 3(3), 177–192 (2014)

    Article  CAS  Google Scholar 

  14. Menazea, A., Abdelghany, A.: Gamma irradiated Hench's Bioglass and their derivatives Hench's Bioglass-ceramic for bone bonding efficiency. Radiat. Phys. Chem. 174, 108932 (2020)

  15. Jeon, E.K., Seo, E., Lee, E., Lee, W., Um, M.-K., Kim, B.-S.: Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications. Chem. Commun. 49(33), 3392–3394 (2013)

    Article  CAS  Google Scholar 

  16. Zhao, X., Wang, W., Liu, L., Hu, Y., Xu, Z., Liu, L., Wu, N., Li, N.: Microstructure evolution of sandwich graphite oxide/interlayer-embedded Au nanoparticles induced from γ-rays for carcinoembryonic antigen biosensor. Nanotechnol. 30(49), 495501 (2019)

    Article  CAS  Google Scholar 

  17. Zhao, C., Yang, Y., Luo, L., Shao, S., Zhou, Y., Shao, Y., Zhan, F., Yang, J., Zhou, Y.: γ-ray induced formation of oxygen vacancies and Ti3+ defects in anatase TiO2 for efficient photocatalytic organic pollutant degradation. Sci. Total Environ. 747, 141533 (2020)

    Article  CAS  PubMed  Google Scholar 

  18. Wang, W., Zhao, X., Shi, H., Liu, L., Deng, H., Xu, Z., Tian, F., Miao, X.: Shape inducer-free polygonal angle platinum nanoparticles in graphene oxide as oxygen reduction catalyst derived from gamma irradiation. J. Colloid Interface Sci. 575, 1–15 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. Li, X., Liu, L., Xu, Z., Wang, W., Shi, J., Liu, L., Jing, M., Li, F., Zhang, X.: Gamma irradiation and microemulsion assisted synthesis of monodisperse flower-like platinum-gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sens. Actuators B Chem. 287, 267–277 (2019)

    Article  CAS  Google Scholar 

  20. Dorcheh, S., Vahabi, K.: Biosynthesis of nanoparticles by fungi: large-scale production. Fungal metabolites. Springer International Publishing, Cham (2016)

    Google Scholar 

  21. Golzar, H., Mohammadrezaei, D., Yadegari, A., Rasoulianboroujeni, M., Hashemi, M., Omidi, M., Yazdian, F., Shalbaf, M., Tayebi, L.: Incorporation of functionalized reduced graphene oxide/magnesium nanohybrid to enhance the osteoinductivity capability of 3D printed calcium phosphate-based scaffolds. Compos. B Eng. 185, 107749 (2020)

    Article  CAS  Google Scholar 

  22. El-Sayed, E.-S.R., Abdelhakim, H.K., Ahmed, A.S.: Solid-state fermentation for enhanced production of selenium nanoparticles by gamma-irradiated Monascus purpureus and their biological evaluation and photocatalytic activities. Bioprocess Biosyst. Eng. 43(5), 797–809 (2020)

    Article  CAS  PubMed  Google Scholar 

  23. Prueckler, M., Siebenhandl-Ehn, S., Apprich, S., Hoeltinger, S., Haas, C., Schmid, E., Kneifel, W.: Wheat bran-based biorefinery 1: composition of wheat bran and strategies of functionalization. LWT 56(2), 211–221 (2014)

    Article  CAS  Google Scholar 

  24. Ismail, A.-W.A., Sidkey, N.M., Arafa, R.A., Fathy, R.M., El-Batal, A.I.: Evaluation of in vitro antifungal activity of silver and selenium nanoparticles against Alternaria solani caused early blight disease on potato. Biotechnol. J. Int. 12(3), 1–11 (2016)

    Google Scholar 

  25. El-Sayyad, G.S., Mosallam, F.M., El-Batal, A.I.: One-pot green synthesis of magnesium oxide nanoparticles using Penicillium chrysogenum melanin pigment and gamma rays with antimicrobial activity against multidrug-resistant microbes. Adv. Powder Technol. 29(11), 2616–2625 (2018)

    Article  CAS  Google Scholar 

  26. Liang, Y., Yang, D., Cui, J.: A graphene oxide/silver nanoparticle composite as a novel agricultural antibacterial agent against Xanthomonas oryzae pv. oryzae for crop disease management. New J. Chem. 41(22), 13692–13699 (2017)

    Article  CAS  Google Scholar 

  27. El-Nemr, K.F., Mohamed, H.R., Ali, M.A., Fathy, R.M., Dhmees, A.S.: Polyvinyl alcohol/gelatin irradiated blends filled by lignin as green filler for antimicrobial packaging materials. Int. J. Environ. Analyt. Chem. 100(14), 1578–1602 (2020)

    Article  CAS  Google Scholar 

  28. Fathy, R.M., Salem, M.S.E., Mahfouz, A.Y.: Biogenic synthesis of silver nanoparticles using Gliocladium deliquescens and their application as household sponge disinfectant. Biol. Trace Elem. Res. 196(2), 662–678 (2019)

    Article  PubMed  CAS  Google Scholar 

  29. El-Batal, A.I., Sidkey, N.M., Ismail, A., Arafa, R.A., Fathy, R.M.: Impact of silver and selenium nanoparticles synthesized by gamma irradiation and their physiological response on early blight disease of potato. J Chem Pharm Res 8(4), 934–951 (2016)

    CAS  Google Scholar 

  30. Silva, V.A.O., Rosa, M.N., Tansini, A., Oliveira, R.J., Martinho, O., Lima, J.P., Pianowski, L.F., Reis, R.M.: In vitro screening of cytotoxic activity of euphol from Euphorbia tirucalli on a large panel of human cancer-derived cell lines. Exp. Ther. Med. 16(2), 557–566 (2018)

    PubMed  PubMed Central  Google Scholar 

  31. El-Batal, A.I., Mosallam, F.M., Ghorab, M., Hanora, A., Gobara, M., Baraka, A., Elsayed, M.A., Pal, K., Fathy, R.M., Elkodous, M.A.: Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells. Int. J. Biol. Macromol. 156, 1584–1599 (2019)

    Article  PubMed  CAS  Google Scholar 

  32. Narendhran, S., Manikandan, M., Shakila, P.B.: Antibacterial, antioxidant properties of Solanum trilobatum and sodium hydroxide-mediated magnesium oxide nanoparticles: a green chemistry approach. Bull. Mater. Sci. 42(3), 133 (2019)

    Article  CAS  Google Scholar 

  33. Jeong, H.-H., Mark, A.G., Fischer, P.: Magnesium plasmonics for UV applications and chiral sensing. Chem. Commun. 52(82), 12179–12182 (2016)

    Article  CAS  Google Scholar 

  34. Ji, Y., Ji, Z., Yao, M., Qian, Y., Peng, Y.: Negative absorption peaks in ultraviolet–visible spectrum of water. Chem. Select 1(13), 3443–3448 (2016)

    CAS  Google Scholar 

  35. Harish, B., Uppuluri, K.B., Anbazhagan, V.: Synthesis of fibrinolytic active silver nanoparticle using wheat bran xylan as a reducing and stabilizing agent. Carbohydr. Polym. 132, 104–110 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. Tavakol, M., Vasheghani-Farahani, E., Mohammadifar, M.A., Dehghan-Niri, M.: Effect of gamma irradiation on the physicochemical and rheological properties of enzyme-catalyzed tragacanth-based injectable hydrogels. J. Polym. Eng. 39(5), 442–449 (2019)

    Article  CAS  Google Scholar 

  37. El-Ashhab, F., Sheha, L., Abdalkhalek, M., Khalaf, H.A.: The influence of gamma irradiation on the intrinsic properties of cellulose acetate polymers. J. Assoc. Univ. Basic Appl. Sci. 14(1), 46–50 (2013)

    Google Scholar 

  38. García, M.A., de la Paz, N., Castro, C., Rodríguez, J.L., Rapado, M., Zuluaga, R., Ganán, P., Casariego, A.: Effect of molecular weight reduction by gamma irradiation on the antioxidant capacity of chitosan from lobster shells. J. Radiat. Res. Appl. 8(2), 190–200 (2015)

    Google Scholar 

  39. Slavin, Y.N., Asnis, J., Häfeli, U.O., Bach, H.: Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15(1), 1–20 (2017)

    Article  CAS  Google Scholar 

  40. Sushma, N.J., Prathyusha, D., Swathi, G., Madhavi, T., Raju, B.D.P., Mallikarjuna, K., Kim, H.-S.: Facile approach to synthesize magnesium oxide nanoparticles by using Clitoria ternatea—characterization and in vitro antioxidant studies. Appl. Nanosci. 6(3), 437–444 (2016)

    Article  CAS  Google Scholar 

  41. Le Caër, S.: Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water 3(1), 235–253 (2011)

    Article  CAS  Google Scholar 

  42. Moorthy, S.K., Ashok, C., Rao, K.V., Viswanathan, C.: Synthesis and characterization of MgO nanoparticles by Neem leaves through green method. Mater. Today 2(9), 4360–4368 (2015)

    Google Scholar 

  43. Suresh, J., Pradheesh, G., Alexramani, V., Sundrarajan, M., Hong, S.I.: Green synthesis and characterization of hexagonal shaped MgO nanoparticles using insulin plant (Costus pictus D. Don) leave extract and its antimicrobial as well as anticancer activity. Adv. Powder Technol. 29(7), 1685–1694 (2018)

    Article  CAS  Google Scholar 

  44. Halouane, F., Oz, Y., Meziane, D., Barras, A., Juraszek, J., Singh, S.K., Kurungot, S., Shaw, P.K., Sanyal, R., Boukherroub, R.: Magnetic reduced graphene oxide loaded hydrogels: highly versatile and efficient adsorbents for dyes and selective Cr (VI) ions removal. J. Colloid Interface Sci. 507, 360–369 (2017)

    Article  CAS  PubMed  Google Scholar 

  45. Jaworski, S., Wierzbicki, M., Sawosz, E., Jung, A., Gielerak, G., Biernat, J., Jaremek, H., Łojkowski, W., Woźniak, B., Wojnarowicz, J.: Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent. Nanoscale Res. Lett. 13(1), 116 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. El-Batal, A.I., Al-Hazmi, N.E., Mosallam, F.M., El-Sayyad, G.S.: Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microb. Pathog. 118, 159–169 (2018)

    Article  CAS  PubMed  Google Scholar 

  47. Seigneuric, R., Markey, L., Nuyten, D., Dubernet, C., Evelo, C., Finot, E., Garrido, C.: From nanotechnology to nanomedicine: applications to cancer research. Curr. Mol. Med. 10(7), 640–652 (2010)

    Article  CAS  PubMed  Google Scholar 

  48. El-Batal, A.I., Mosallam, F.M., El-Sayyad, G.S.: Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes. J. Clust. Sci. 29(6), 1003–1015 (2018)

    Article  CAS  Google Scholar 

  49. Heidarizad, M., Şengör, S.S.: Synthesis of graphene oxide/magnesium oxide nanocomposites with high-rate adsorption of methylene blue. J. Mol. Liq. 224, 607–617 (2016)

    Article  CAS  Google Scholar 

  50. Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y.: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463–470 (2008)

    Article  CAS  PubMed  Google Scholar 

  51. Khaki, A., Garmabi, H., Javadi, A., Yahyaee, N.: Effect of crystallinity, crystal polymorphism, and graphene oxide nanosheets on the barrier properties of poly (l-lactic acid). Eur. Polym. J. 118, 53–63 (2019)

    Article  CAS  Google Scholar 

  52. Zavrel, M., Esquivel, B., White, T.: The ins and outs of azole antifungal drug resistance: molecular mechanisms of transport. Handbook of antimicrobial resistance, pp. 423–452. Springer, New York (2017)

    Google Scholar 

  53. Liu, Y., Breukink, E.: The membrane steps of bacterial cell wall synthesis as antibiotic targets. Antibiotics 5(3), 28 (2016)

    Article  PubMed Central  CAS  Google Scholar 

  54. Akhavan, O., Ghaderi, E.: Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10), 5731–5736 (2010)

    Article  CAS  PubMed  Google Scholar 

  55. Priyadarsini, S., Mohanty, S., Mukherjee, S., Basu, S., Mishra, M.: Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostruct, Chem. 8(2), 123–137 (2018)

    Article  CAS  Google Scholar 

  56. Hamdy, M.S., Chandekar, K.V., Shkir, M., AlFaify, S., Ibrahim, E.H., Ahmad, Z., Kilany, M., Al-Shehri, B.M., Al-Namshah, K.S.: Novel Mg@ZnO nanoparticles synthesized by facile one-step combustion route for anti-microbial, cytotoxicity and photocatalysis applications. J. Nanostruct. Chem. (2020). https://doi.org/10.1007/s40097-020-00355-9

    Article  Google Scholar 

  57. Tang, Z.-X., Lv, B.-F.: MgO nanoparticles as antibacterial agent: preparation and activity. Braz. J. Chem. Eng. 31(3), 591–601 (2014)

    Article  Google Scholar 

  58. Nel, A., Xia, T., Mädler, L., Li, N.: Toxic potential of materials at the nanolevel. Science 311(5761), 622–627 (2006)

    Article  CAS  PubMed  Google Scholar 

  59. Sánchez-López, E., Gomes, D., Esteruelas, G., Bonilla, L., Lopez-Machado, A.L., Galindo, R., Cano, A., Espina, M., Ettcheto, M., Camins, A.: Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 10(2), 292 (2020)

    Article  PubMed Central  CAS  Google Scholar 

  60. Losasso, C., Belluco, S., Cibin, V., Zavagnin, P., Mičetić, I., Gallocchio, F., Zanella, M., Bregoli, L., Biancotto, G., Ricci, A.: Antibacterial activity of silver nanoparticles: sensitivity of different Salmonella serovars. Front. Microbiol. 5, 227 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  61. Seil, J.T., Webster, T.J.: Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomed. 7, 81–2767 (2012)

    Google Scholar 

  62. Rahman, A., Ulven, C.A., Durant, C., Johnson, M.A., Fehrenbach, J., Hossain, K.G.: Selection, pretreatment, and use of wheat bran for making thermoplastic composite. In: ASABE Annual International Meeting, p. 1. American Society of Agricultural and Biological Engineers,Washington (2017)

  63. Van de Loosdrecht, A., Beelen, R., Ossenkoppele, G., Broekhoven, M., Langenhuijsen, M.: A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immunol. Methods 174(1–2), 311–320 (1994)

    Article  PubMed  Google Scholar 

  64. Onipe, O.O., Jideani, A.I., Beswa, D.: Composition and functionality of wheat bran and its application in some cereal food products. Int. J. Food Sci. Technol. 50(12), 2509–2518 (2015)

    Article  CAS  Google Scholar 

  65. Prinsen, P., Gutiérrez, A., Faulds, C.B., Del Río, J.C.: Comprehensive study of valuable lipophilic phytochemicals in wheat bran. J. Agric. Food Chem. 62(7), 1664–1673 (2014)

    Article  CAS  PubMed  Google Scholar 

  66. Mosallam, F.M., El-Sayyad, G.S., Fathy, R.M., El-Batal, A.I.: Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb. Pathog. 122, 108–116 (2018)

    Article  CAS  PubMed  Google Scholar 

  67. Nguyen, N.-Y.T., Grelling, N., Wetteland, C.L., Rosario, R., Liu, H.: Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms. Sci. Rep. 8(1), 1–23 (2018)

    Article  Google Scholar 

  68. Patel, M.K., Zafaryab, M., Rizvi, M., Agrawal, V.V., Ansari, Z., Malhotra, B., Ansari, S.: Antibacterial and cytotoxic effect of magnesium oxide nanoparticles on bacterial and human cells. J. Nanoeng. Nanomanuf. 3(2), 162–166 (2013)

    Article  CAS  Google Scholar 

  69. Kandiah, K., Jeevanantham, T., Ramasamy, B.: Reliability of antioxidant potential and in vivo compatibility with extremophilic actinobacterial-mediated magnesium oxide nanoparticle synthesis. Artif. Cell Nanomed. B 47(1), 862–872 (2019)

    Article  CAS  Google Scholar 

  70. Pugazhendhi, A., Prabhu, R., Muruganantham, K., Shanmuganathan, R., Natarajan, S.: Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J. Photochem. Photobiol. B Biol. 190, 86–97 (2019)

    Article  CAS  Google Scholar 

  71. Sharma, A., Goyal, A.K., Rath, G.: Recent advances in metal nanoparticles in cancer therapy. J. Drug Target. 26(8), 617–632 (2018)

    Article  CAS  PubMed  Google Scholar 

  72. Morales, J., Li, L., Fattah, F.J., Dong, Y., Bey, E.A., Patel, M., Gao, J., Boothman, D.A.: Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit. Rev. Eukaryot. Gene Expr. 24(1), 15–28 (2014)

  73. Gunduz, N., Ceylan, H., Guler, M.O., Tekinay, A.B.: Intracellular accumulation of gold nanoparticles leads to inhibition of macropinocytosis to reduce the endoplasmic reticulum stress. Sci. Rep. 7(1), 1–10 (2017)

    Article  CAS  Google Scholar 

  74. Sun, W., Sanderson, P.E., Zheng, W.: Drug combination therapy increases successful drug repositioning. Drug Discov. Today 21(7), 1189–1195 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ahamed, M., Akhtar, M.J., Khan, M.: Investigation of cytotoxicity, apoptosis, and oxidative stress response of Fe3O4-RGO nanocomposites in human liver HepG2 cells. Materials 13(3), 660 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  76. Saravanakumar, K., Wang, M.-H.: Biogenic silver embedded magnesium oxide nanoparticles induce the cytotoxicity in human prostate cancer cells. Adv. Powder Technol. 30(4), 786–794 (2019)

    Article  CAS  Google Scholar 

  77. Wang, C., Ravi, S., Garapati, U.S., Das, M., Howell, M., Mallela, J., Alwarappan, S., Mohapatra, S.S., Mohapatra, S.: Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J. Mater. Chem. B 1(35), 4396–4405 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Banerjee, P.P., Bandyopadhyay, A., Mondal, P., Mondal, M.K., Chowdhury, P., Chakraborty, A., Sudarshan, M., Bhattacharya, S., Chattopadhyay, A.: Cytotoxic effect of graphene oxide-functionalized gold nanoparticles in human breast cancer cell lines. Nucleus 62(3), 243–250 (2019)

    Article  Google Scholar 

  79. Ma, J., Liu, R., Wang, X., Liu, Q., Chen, Y., Valle, R.P., Zuo, Y.Y., Xia, T., Liu, S.: Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano 9(10), 10498–10515 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Dr Ahmed Ibrahim El-Batal for his fruitful support to this work and also thank Dr. Gharieb S. El-Sayyad for his valuable supporter role.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasha M. Fathy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathy, R.M., Mahfouz, A.Y. Eco-friendly graphene oxide-based magnesium oxide nanocomposite synthesis using fungal fermented by-products and gamma rays for outstanding antimicrobial, antioxidant, and anticancer activities. J Nanostruct Chem 11, 301–321 (2021). https://doi.org/10.1007/s40097-020-00369-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00369-3

Keywords

Navigation