Skip to main content
Log in

Solvability of some fractional differential equations in the Hölder space \({\mathcal {H}}_{\gamma }(\mathbb {R_+})\) and their numerical treatment via measures of noncompactness

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study the following fractional boundary value problem:

$$\begin{aligned} {\left\{ \begin{array}{ll} D^{\alpha }\upsilon (t)+f(t,\upsilon (t))=0,\quad \alpha \in (1,2],\quad 0<t<+\infty , \\ \upsilon (0)=0,\quad D^{\alpha -1}\upsilon (\infty )=\lambda \int _{0}^{\tau } \upsilon (t)\hbox {d}t. \end{array}\right. } \end{aligned}$$

The goal of this paper is to bring forward a new family of measures of noncompactness and prove a fixed point theorem of Darbo type in the Hölder space \({\mathcal {H}}_{\gamma }(\mathbb {R_+})\). Moreover, we provide an example which supports our main result and in carrying out an proximate solution for the mentioned example with high precision we apply several numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agarwal, R.P., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications, Cambridge tracts in mathematics, vol. 141. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  2. Aghajani, A., Allahyari, R., Mursaleen, M.: A generalization of Darbo’s theorem with the application to the solvability of system of integral equations. J. Comput. Appl. Math. 260, 68–77 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Aghajani, A., Mursaleen, M., Haghighi, A.S.: Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness. Acta Math. Sci. Ser. B Engl. Ed. 35(3), 552–566 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Ahmad, B., Nieto, J.J.: Anti-periodic fractional boundary value problems. Comput. Math. Appl. 62(3), 1150–1156 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Allahyari, R.: The behaviour of measures of noncompactness in \(L^\infty ({{\mathbb{R}}}^ n)\) with application to the solvability of functional integral equations. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 112(2), 561–573 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Arara, A., Benchohra, M., Hamidi, N., Nieto, J.J.: Fractional order differential equations on an unbounded domain. Nonlinear Anal. 72(2), 580–586 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Banaś, J., Nalepa, R.: On a measure of noncompactness in the space of functions with tempered increments. J. Math. Anal. Appl. 435(2), 1634–1651 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Benhamouche, L., Djebali, S.: Solvability of functional integral equations in the Fréchet space \(C(\Omega )\). Mediterr. J. Math. 13(6), 4805–4817 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Chen, T., Liu, W.: An anti-periodic boundary value problem for the fractional differential equation with a $p-$Laplacian operator. Appl. Math. Lett. 25(11), 1671–1675 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Das, A., Hazarika, B., Parvaneh, V., Mursaleen, M.: Solvability of generalized fractional order integral equations via measures of noncompactness. Math. Sci. 15, 241–251 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Das, A., Mohiuddine, S.A., Alotaibi, A., Deuri, B.C.: Generalization of Darbo-type theorem and application on existence of implicit fractional integral equations in tempered sequence spaces. Alex. Eng. J. (2021). https://doi.org/10.1016/j.aej.2021.07.031

    Article  Google Scholar 

  12. Darbo, G.: Punti uniti in trasformazioni a codominio non compatto. Rend. Sem. Mat. Uni. Padova. 24, 84–92 (1955)

    MathSciNet  MATH  Google Scholar 

  13. Grammont, L.: Nonlinear integral equations of the second kind: a new version of Nyström method. Numer. Funct. Anal. Optim. 34(5), 496–515 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Hazarika, B., Karapınar, E., Arab, R., Rabbani, M.: Metric-like spaces to prove existence of solution for nonlinear quadratic integral equation and numerical method to solve it. J. Comput. Appl. Math. 328, 302–313 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Hazarika, B., Srivastava, H.M., Arab, R., Rabbani, M.: Existence of solution for an innite system of nonlinear integral equations via measure of noncompactness and homotopy perturbation method to solve it. J. Comput. Appl. Math. 343, 341–352 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Hazarika, B., Srivastava, H.M., Arab, R., Rabbani, M.: Application of simulation function and measure of noncompactness for solvability of nonlinear functional integral equations and introduction of an iteration algorithm to find solution. Appl. Math. Comput. 360(1), 131–146 (2019)

    MathSciNet  MATH  Google Scholar 

  17. He, J.H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-linear Mech. 35(1), 37–43 (2000)

    MathSciNet  MATH  Google Scholar 

  18. He, J.H.: Asymptotology by homotopy perturbation method. Appl. Math. Comput. 156(3), 591–596 (2004)

    MathSciNet  MATH  Google Scholar 

  19. He, J.H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput. 151(1), 287–292 (2004)

    MathSciNet  MATH  Google Scholar 

  20. He, J.H.: Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fractals 26(3), 695–700 (2005)

    MATH  Google Scholar 

  21. He, J.H.: Limit cycle and bifurcation of nonlinear problems. Chaos Solitons Fractals 26(3), 827–833 (2005)

    MATH  Google Scholar 

  22. He, J.H.: Homotopy perturbation method for solving boundary problems. Phys. Lett. A. 350(1–2), 87–88 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Jleli, M., Mursaleen, M., Samet, B.: On a class of q-integral equations of fractional orders. Electron. J. Differ. Equ. 2016(17), 1–14 (2016)

    MATH  Google Scholar 

  24. Kayvanloo, H.A., Khanehgir, M., Allahyari, R.: A family of measures of noncompactness in the space \(\varvec { L^{p}_{loc}({\mathbb{R}}^{N})}\) and its application to some nonlinear convolution type integral equations. Cogent Math. Stat. 6(1), 1592276 (2019)

    MATH  Google Scholar 

  25. Kayvanloo, H.A., Khanehgir, M., Allahyari, R.: A family of measures of noncompactness in the Hölder space \(C^{n,\gamma }(\mathbb{R_+})\) and its application to some fractional differential equations and numerical methods. J. Comput. Appl. Math. 363, 256–272 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier Science Limited, Amsterdam (2006)

    MATH  Google Scholar 

  27. Kuratowski, K.: Sur les espaces complets. Fund. Math. 15, 301–309 (1930)

    MATH  Google Scholar 

  28. Lian, H., Wang, P., Ge, W.: Unbounded upper and lower solutions method for Sturm-Liouville boundary value problem on infinite intervals. Nonlinear Anal. 70(7), 2627–2633 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Mohiuddine, S.A., Srivastava, H.M., Alotaibi, A.: Application of measures of noncompactness to the infinite system of second-order differential equations in $\ell _{p}$ spaces. Adv. Differ. Equ. 2016, 317 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Mursaleen, M., Bilalov, B., Rizvi, S.M.H.: Applications of measures of noncompactness to infinite system of fractional differential equations. Filomat 31(11), 3421–3432 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Mursaleen, M., Rizvi, S.M.H.: Solvability of infinite systems of second order differential equations in \(c_{0} \hbox{and} l_{1}\) by Meir-Keeler condensing operators. Proc. Am. Math. Soc. 144, 4279–4289 (2016)

    MATH  Google Scholar 

  32. Olszowy, L.: Fixed point theorems in the Fr échet space \(C (\mathbb{R_+})\) and functional integral equations on an unbounded interval. Appl. Math. Comput. 218(18), 9066–9074 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol. 198. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  34. Pouladi Najafabadi, F., Nieto, Juan J., Amiri Kayvanloo, H.: Measure of noncompactness on weighted Sobolev space with an application to some nonlinear convolution type integral equations. J. Fixed Point Theory Appl. 22(3), 1–15 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Rabbani, M.: New homotopy perturbation method to solve non-linear problems. J. Math. Comput. Sci. 7, 272–275 (2013)

    Google Scholar 

  36. Rabbani, M.: Modified homotopy method to solve non-linear integral equations. Int. J. Nonlinear Anal. Appl. 6(2), 133–136 (2015)

    MATH  Google Scholar 

  37. Rabbani, M., Arab, R.: Extension of some theorems to find solution of nonlinear integral equation and homotopy perturbation method to solve it. Math. Sci. 11(2), 87–94 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Rabbani, M., Das, A., Hazarika, B., Arab, R.: Measure of noncompactness of a new space of tempered sequences and its application on fractional differential equations. Chaos Solitons Fractals 140(4), 110221 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Rabbani, M., Das, A., Hazarika, B., Arab, R.: Existence of solution for two dimensional nonlinear fractional integral equation by measure of non-compactness and iterative algorithm to solve it. J. Comput. Appl. Math. 370, 112654 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Runde, V.: A Taste of Topology, Universitext. Springer, New York (2005)

    MATH  Google Scholar 

  41. Saiedinezhad, S.: On a measure of noncompactness in the Holder space \(C{k,\gamma }(\Omega )\) and its application. J. Comput. Appl. Math. 346, 566–571 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Srivastava, H.M., Das, A., Hazarika, B., Mohiuddine, S.A.: Existence of solutions of infinite systems of differential equations of general order with boundary conditions in the spaces \(c_{0} \hbox{and} \ell _{1}\) via the measure of noncompactness. Math. Meth. Appl. Sci. 41, 3558–3569 (2018)

    MATH  Google Scholar 

  43. Su, X.: Solutions to boundary value problem of fractional order on unbounded domains in a Banach space. Nonlinear Anal. 74(8), 2844–2852 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Wang, G., Ahmad, B., Zhang, L.: A coupled system of nonlinear fractional differential equations with multipoint fractional boundary conditions on an unbounded domain. Abstr. Appl. Anal. 2012, 248709 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Wang, G., Cabada, A., Zhang, L.: An integral boundary value problem for nonlinear differential equations of fractional order on an unbounded domain. J. Integral Equ. Appl. 26(1), 117–129 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Wazwaz, A.M.: Linear and Nonlinear Integral Equations: Methods and Applications. Springer, Berlin (2011)

    MATH  Google Scholar 

  47. Zhao, X., Ge, W.: Unbounded solutions for a fractional boundary value problems on the infinite interval. Acta Appl. Math. 109(2), 495–505 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mursaleen.

Additional information

Communicated by Hamid Pezeshk.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri Kayvanloo, H., Mursaleen, M., Mehrabinezhad, M. et al. Solvability of some fractional differential equations in the Hölder space \({\mathcal {H}}_{\gamma }(\mathbb {R_+})\) and their numerical treatment via measures of noncompactness. Math Sci 17, 387–397 (2023). https://doi.org/10.1007/s40096-022-00458-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-022-00458-0

Keywords

Mathematics Subject Classification

Navigation