Skip to main content
Log in

A numerical method for nonlinear fractional reaction–advection–diffusion equation with piecewise fractional derivative

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

This study introduces a new fractional version of the nonlinear reaction–advection–diffusion equation using a kind of piecewise fractional derivatives defined by Atangana and Araz. A hybrid approach using the Chebyshev cardinal functions and piecewise Chebyshev cardinal functions is established for finding a solution to this equation. The presented method transforms solving the generated fractional problem into finding the solution of a nonlinear algebraic system by expanding the solution of the problem in terms of the mentioned basis functions and employing the piecewise fractional derivative matrix of the piecewise Chebyshev cardinal functions (which is derived in this study). The accuracy of the constructed algorithm is checked in some illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baleanu, D., Ghanbari, B., Asad, J., Jajarmi, A., Mohammadi, Pirouz H.: Planar system-masses in an equilateral triangle: numerical study within fractional calculus. CMES-Comput. Model. Eng. Sci. 124(3), 953–968 (2020)

    Google Scholar 

  2. Sadat Sajjadi, S., Baleanu, D., Jajarmi, A., Mohammadi, Pirouz H.: A new adaptive synchronization and hyperchaos control of a biological snap oscillator. Chaos, Solitons Fractals 138, 109919 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier, USA (1998)

    MATH  Google Scholar 

  4. El-Shahed, M., Nieto, J.J., Ahmed, A.: Fractional-order model for biocontrol of the lesser date moth in palm trees and its discretization. Adv. Difference Equ. 2017, 295 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, M.: Multi-fractional generalized Cauchy process and its application to teletraffic. Phys. A (2020). https://doi.org/10.1016/j.physa.2019.123982

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, M.: Three classes of fractional oscillators, symmetry-Basel. Symmetry 10(2), 91 (2018)

    Article  MathSciNet  Google Scholar 

  7. Rouzegar, J., Vazirzadeh, M., Heydari, M.H.: A fractional viscoelastic model for vibrational analysis of thin plate excited by supports movement. Mech. Res. Commun. 110, 103618 (2020)

    Article  Google Scholar 

  8. Ghanbari, B., Atangana, A.: Some new edge detecting techniques based on fractional derivatives with non-local and non-singular kernels. Adv. Difference Eq. (2020). https://doi.org/10.1186/s13662-020-02890-9

    Article  MathSciNet  Google Scholar 

  9. Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Do, Q. H., Hoa. Ngo, T. B., Razzaghi M.: A generalized fractional-order Chebyshev wavelet method for two-dimensional distributed-order fractional differential equations. Commun. Nonlinear Sci. Numerical Simulation, 95:105597, (2021)

  11. Heydari, M.H., Hooshmandasl, M.R., Maalek, Ghaini F.M..: An efficient computational method for solving fractional biharmonic equation. Comput. Math. Appl. 68(3), 269–287 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hooshmandasl, M.R., Heydari, M.H., Cattani, C.: Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions. European Phys. J. Plus 131(8), 1–22 (2016)

    Article  Google Scholar 

  13. Dehestani, H., Ordokhani, Y., Razzaghi, M.: Modified wavelet method for solving fractional variational problems. J. Vibration Control, page 1077546320932025, (2020)

  14. Atangana, A., Araz, S.İ: New concept in calculus: piecewise differential and integral operators. Chaos, Solitons Fractals 145, 110638 (2021)

    Article  MathSciNet  Google Scholar 

  15. Schumer, R., Meerschaert, M.M., Baeumer, B.: Fractional advection-dispersion equations for modeling transport at the earth surface. J. Geophys. Res (2009). https://doi.org/10.1029/2008JF001246

    Article  Google Scholar 

  16. Haq, S., Hussain, M., Ghafoor, A.: A computational study of variable coefficients fractional advection-difusion-reaction equations via implicit meshless spectral algorithm. Eng. Comput 36, 1243–1263 (2020)

    Article  Google Scholar 

  17. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39(10), 1296 (2003)

    Article  Google Scholar 

  18. Cui, M.: Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients. J. Comput. Phys. 280, 143–163 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, Y., Wu, Y., Cui, Y., Wang, Z., Jin, D.: Wavelet method for a class of fractional convection-diffusion equation with variable coefficients. J. Comput. Sci. 1(3), 146–149 (2010)

    Article  Google Scholar 

  20. Saadatmandi, A., Dehghan, M., Azizi, M.R.: The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 17(11), 4125–4136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Heydari, M.H., Avazzadeh, Z., Yang, Y.: Numerical treatment of the space-time fractal-fractional model of nonlinear advection-diffusio-reaction equation through the Bernstein polynomials. Fractals 28(8), 2040001 (2020)

    Article  MATH  Google Scholar 

  22. Heydari, M.H., Atangana, A.: A cardinal approach for nonlinear variable-order time fractional Schrödinger equation defined by Atangana-Baleanu-Caputo derivative. Chaos, Solitons Fractals 128, 339–348 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Heydari, M.H.: A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems. J. Franklin Inst. 355, 4970–4995 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Heydari, M.H., Avazzadeh, Z.: A direct computational method for nonlinear variable-order fractional delay optimal control problems. Asian J. Control (2020). https://doi.org/10.1002/asjc.2408

    Article  Google Scholar 

  25. Avazzadeh, Z., Heydari, M.H., Reza, Mahmoudi M.: An approximate approach for the generalized variable-order fractional pantograph equation. Alexandria Eng. J. 59, 2347–2354 (2020)

    Article  Google Scholar 

  26. Heydari, M.H., Razzaghi, M.: Piecewise Chebyshev cardinal functions: application for constrained fractional optimal control problems. Chaos, Solitons Fractals 150, 111118 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Heydari, M.H., Avazzadeh, Z., Atangana, A., Yang, Y.: Numerical treatment of the strongly coupled nonlinear fractal-fractional Schrödinger equations through the shifted Chebyshev cardinal functions. Alex. Eng. J. 59, 2037–2052 (2020)

    Article  Google Scholar 

  28. Odibat, Z., Baleanu, D.: A linearization-based approach of homotopy analysis method for non-linear time-fractional parabolic PDEs. Math. Methods Appl. Sci. 42, 7222–7232 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Heydari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, M.H., Atangana, A. A numerical method for nonlinear fractional reaction–advection–diffusion equation with piecewise fractional derivative. Math Sci 17, 169–181 (2023). https://doi.org/10.1007/s40096-021-00451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-021-00451-z

Keywords

Navigation