Skip to main content
Log in

Conversion of solar irradiance determined by satellite images to electrical energy using photovoltaic technology (a case study of northeastern state (NES) of Nigeria)

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

This study determined solar irradiance by satellite images and converted it into electrical power using different type’s photovoltaic technology. The process was done using the Aeronautical reconnaissance coverage geographical information system (ArcGIS). The mean annual global solar irradiance were calculated for the entire NES, while ArcGIS weighting overlay was used to determine the suitability area for the conversion. According to the study, Yobe received the higher global solar irradiance with an annual mean value of 2264.69 kWh/m2/year, followed by Borno 2244.94 Kwh/m2/year, Bauchi 2208.52 Kwh/m2/year, Gombe 2167.03 Kwh/m2/year Adamawa 2154.93 Kwh/m2/year, while Taraba has the least amount of global solar irradiance of 2017.96 kWh/m2/year. The suitable areas for Adamawa, Bauchi, Borno, Gombe, Taraba, and Yobe are as follows: 12,042.2, 17,069.1, 39,426.3, and 6755.99 Km2, 4924.82, and 23,215.5 Km2, respectively. And the electrical energy determined for different types of photovoltaic technology, i.e., Single-crystalline-silicon, Multi-crystalline-silicon, Amorphous-Silicon and Cadmium-Telluride for Adamawa, 194.3 MW, 179.8, 77.73 MW and 140.7 MW, Bauchi 306.4, 283.4, 122.6 and 222.1 MW Borno1101, 1019, 440.5 and 798.5 MW Gombe, 132.2, 122.3, 52.90 and 95.87 MW, Taraba 19.06, 17.63, 7.623 and 13.83 MW, Yobe 623.0, 576.3, 294.2 and 451.7 MW, respectively. It has been concluded that northeast states are blessed with abundant solar irradiance, which is suitable for installing a photovoltaic station, and single crystalline silicon is the best photovoltaic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

NES:

Northeast states

L :

Spectral radiance measured over spectral bandwidth of a channel in Wm−2sr−1 μm−1

DN:

Digital number value recorded,

L max :

Radiance measured at detector saturation in Wm−2sr−1 μm−1,

L min :

Lowest radiance measured by detector in Wm−2sr−1 μm−1,

\(\emptyset\) :

Azimuth angle

\(\theta\) :

Polar angle

Ω :

Solid angle

sc-Si:

Single-crystalline Silicon

mc-Si:

Multi-crystalline Silicon

a-Si :

Amorphous Silicon

CdTe:

Cadmium-Telluride

PV:

Photovoltaic

\({\overline{\text{G}}} =\) :

The monthly mean global solar radiation on a horizontal surface (kWh/m2/day),

\({\text{G}}_{{\text{o}}}\) :

The monthly mean extra-terrestrial solar radiation on a horizontal surface (kWh/m2/day)

\({\overline{\text{S}}} =\) :

The monthly mean daily bright sunshine hours (Hours),

\({\text{S}}_{{\text{o}}}\) :

The maximum possible monthly mean daily sunshine hours (Hours), a and b are regression constants depending on on-site location

\(I_{{{\text{sc}}}}\) :

Is the solar constant (= 1367 Wm−2),

\(\emptyset\) :

The latitude of the site,

δ :

The solar declination

\(\omega_{s}\) :

The mean sunrise hour angle for the given month, and

n :

The number of days of the year starting from the first of January.

δ :

The solar declination

KWh/m2/year:

Kilo-Watt-hour per meter square per year

EP :

Electric power generation potential per year (kWh/year)

A R :

Annual solar radiation received per unit horizontal area (kWh/m2/year)

T A :

Calculated total area of suitable land (m2)

A F :

The area factor,

η :

PV system efficiency

References

  1. Petty, G.W.: The first course in atmospheric radiation. Sun dog, Madison, Wisconsin (2006)

    Google Scholar 

  2. Lillesand, T.M., Chipman, J.W., Kiefer, R.W.: Remote sensing and image interpretation. Wiley, Hoboken (2008)

    Google Scholar 

  3. Clifford, N., French, S., Valentine, G.: Critical methods in geography. SAGE, Thousand oaks (2010)

    Google Scholar 

  4. Oesch, E.D.: validating satellite observed thermal emission with in-situ measurements over an urban surface. Remote Sens. Environ. 104, 201–210 (2006)

    Article  Google Scholar 

  5. Aras, H., Balli, O., Hepbasli, A.: Global solar potential part 1: model development. Energy Sour. Part B 1(3), 303–315 (2006)

    Article  Google Scholar 

  6. Mekonnen, S.A.: Solar energy assessment in Ethiopia: modelling and measurement. Addis Ababa University (2007)

  7. Poudyal K. N. Bhattarai B. K. Sapkota B. & Kjeldstad B. (2012) Estimating global solar radiation using sunshine duration in Himalaya region research. J. Chem. Sci. 2(11):20–25, ISSN 2231–606 Noyes. J. Chem. Sci.www.isca.in

  8. Besharat, F., Dehghan, A.A., Faghih, A.R.: Empirical models for estimating global solar radiation: a review and case study. Renew. Sustain. Energy Rev. 21, 798–821 (2013)

    Article  Google Scholar 

  9. Nnabuchi, M.N, Ekpe, J.E. & Ibeh, G.F.: Estimation of global solar radiation in Onitsha and Calabar using empirical models. Commun. Appl. Sci. 1(1):25–37 (2013) ISSN 2201–7372

  10. Yisehak, A.: Comparison of different empirical models in the estimation of mean global solar radiation using Sunshine durations measured at dire Dawa, Ethiopia a project submitted to the Department of physics, college of Natural and Computational Sciences, School of Graduate Studies Haramaya University (2014)

  11. Auwal, M. & Darma, T.H. Estimation of global solar radiation for Kano state Nigeria based on meteorological data IOSR J. Appl. Phys. (IOSR-JAP) e-ISSN: 2278–4861.6(6):19–23 www.iosrjournals.org

  12. Innocentk, A.J, Jacob, O.E, Chibuzo, G.C., James I. Odeh, D.O.: Estimating global solar radiation in Gusau, Nigeria. Int. J. Res. Eng. Technol. (IMPACT: IJRET) 3(2):27–32 (2015) ISSN(E):2321–8843;ISSN(P): 2347–4599

  13. Salah, A., Saleh, H.: Impact of urban expansion on surface temperature in Baghdad, Iraq using remote sensing and GIS technique Department of Physics, College of Science Al-Nahrain University. J. Al-Nahrain Univ. 13(1), 48–59 (2010)

    Article  Google Scholar 

  14. Salihu, M. K. Bello Y. I. & Japari A.: Mapping the spatial distribution of spectral radiance over Mubi town using satellite images landsat 7 Etm+ Research journal’s J. Geogr. 3(3):1–7 (2016) ISSN 2349–5367

  15. Alhassan A.T., Ali E.J.: Sunshine duration-based models for predicting global solar radiation. UKSim-AMSS 19th International Conference on Modelling & Simulation (2017)

  16. Alkasim, A., Dikko, A.B. & Eyube, E.S.: An empirical model for the estimation of global and diffuse solar radiation over yola, northeastern Nigeria based on air Temperature IJRDO-J. Appl. Sci. 3(9):14–24 (2017) ISSN: 2455–6653

  17. Xiao, W., Ozog, N., Dunford, W.G.: Topology study of photovoltaic interface for maximum power point tracking. IEEE Trans. Ind. Electron 54(3), 1696–1704 (2007)

    Article  Google Scholar 

  18. Mills, A., Wiser, R., Barbose, G., Golove, W.: The impact of retail rate structures on the economics of commercial photovoltaic systems in California. Energy Policy 36(9), 3266–3277 (2009)

    Article  Google Scholar 

  19. Hocaoglu, F.O., Gerek, O.N., Kurban, M.: The effect of model generated solar radiation data usage in hybrid (Wind–PV) sizing studies. Energy Convers. Manag. 50, 2956–2963 (2009)

    Article  Google Scholar 

  20. Zhou, W., Lou, C., Lu, L., Yang, H.: Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems. Appl. Energy 87(2), 380–389 (2010)

    Article  Google Scholar 

  21. Parida, B., Iniyan, S., Goic, R.: A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 15, 1625–1636 (2011)

    Article  Google Scholar 

  22. Khan, M.M., Ahmad, M.J.: Estimating global solar radiation using clear sky radiation in Yemen. J. Eng. Sci. Technol. Rev. 5(2), 12–19 (2012)

    Article  Google Scholar 

  23. Gaurav, T., Mohd, I. Raj K.S.: Generation and transmission of electrical power through solar power satellite (SPS) Int. J. Modern Eng. Res. (IJMER) 3(1): 595–598 (2013) ISSN: 2249–6645 www.ijmer.com

  24. Saly, V., Vary, M., Packa, J., Firicky, E., Perny, M., Kubica, J.: Performance and testing of a small roof photovoltaic system. J. Electric. Eng. 65(7s), 15–19 (2014)

    Google Scholar 

  25. Berrada, A., Loudiyi, K.: Optimal modeling of energy storage system. Int. J. Model. Optim. 5(1), 71–77 (2015)

    Article  Google Scholar 

  26. Sampedro, M.S.R.G., Gonzalez, C.S.: Spanish photovoltaic learning curve. Int. J. Low-Carbon Technol. 11, 177–183 (2016)

    Article  Google Scholar 

  27. Aoun, N., Bouchouicha, K., Chenni, R.: Performance evaluation: A mono-crystalline photovoltaic module under different weather and sky conditions. Int. J. Renew. Energy Res. 7(1), 292–297 (2017)

    Google Scholar 

  28. Medugu, D.W., Yakubu, D.: Using angstrom model to estimate mean monthly global solar radiation in Yola (Nigeria). Adv. Appl. Sci. Res. 2(2), 414–421 (2011)

    Google Scholar 

  29. Gastli, A., Charabi, Y.: Solar electricity prospects in Oman using GIS-based solar radiation maps. Renew. Sustain. Energy Rev. 14(2), 790–797 (2011)

    Article  Google Scholar 

  30. National Renewable Energy Laboratory of the USA. https://www.nrel.gov. Accessed 20 June 2021

  31. Rahimikhoob, A.: Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment. Renew. Energy 35(9), 2131–2135 (2010). https://doi.org/10.1016/j.renene.2010.01.029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed K. Salihu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salihu, M.K., Danladi, A. & Medugu, D.W. Conversion of solar irradiance determined by satellite images to electrical energy using photovoltaic technology (a case study of northeastern state (NES) of Nigeria). Int J Energy Environ Eng 14, 687–697 (2023). https://doi.org/10.1007/s40095-022-00543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00543-z

Keywords

Navigation