Skip to main content

Advertisement

Log in

Cooling improvement of an agricultural greenhouse using geothermal energy in a desert climate

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

This work treats the air ventilation and the cooling of a tunnel greenhouse. For determining the temperature of the cover surface, the energy audit is examined by the Trnsys software. The investigation of the thermal comfort inside the greenhouse is performed using the airflow conservation equations. Ansys CFD code is used to simulate indoor thermal behavior. Openings and chimneys are added for evacuating hot air and participating in greenhouse cooling. Natural ventilation of greenhouse and Rayleigh number changes are investigated to show their effects on indoor air temperature. The numeral simulation shows that the increase in buoyancy force leads to an indoor temperature decrease. But experimental tests show that the drowning up of air flow toward the chimney requires an aspirator to reinforce the buoyancy. The integration of geothermal energy shows considerable improvement in reducing indoor temperature and getting less cooling energy levels in critical climatic conditions. Daily energy of 5 kWh is needed to cool the greenhouse at an ambient temperature of 37 °C. Further energy consumption reduction can reach 50% for an ambient temperature of less than 30 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

Ac :

Area of the greenhouse transparent cover [m2]

Ap :

Area of the greenhouse horizontal projection [m2]

Cpa :

Specific heat of moist air at a constant pressure [J/kg]

Cps :

Specific heat of steam at a constant pressure [J/kg]

G:

Solar irradiance [W /m2]

Kc :

Thermal transmittance of the greenhouse transparent cover [W/m2°C]

\(\dot{m}_{a}\) :

Specific airflow [kg/s]

N:

Air change per hour [h−1]

rin :

Specific latent heat of evaporation at the indoor temperature [J/kg]

rout :

Specific latent heat of evaporation at the outdoor temperature [J/kg]

Tin :

Indoor air temperature [°C]

Tout :

Outdoor air temperature [°C]

Ts :

Apparent sky temperature [°C]

V:

Volume of the greenhouse [m3]

Xa,in :

Humidity ratio of moist air at the indoor temperature

Xa,out :

Humidity ratio of moist air at the outdoor temperature

αs :

Solar radiation absorptivity of greenhouse cover

εc :

Emissivity coefficient of greenhouse cover

εv :

Emissivity coefficient of greenhouse cover

ρa :

Air density [kg/s]

τLW :

Medium-long infrared transmission coefficient of greenhouse cover

σ:

Stefan Boltzmann constant [W/C4.m2

References

  1. Ghedamsi, R., Settou, N., Gouareh, A., Khamouli, A., Saifi, N., Recioui, B., Dokkar, B.: Modeling and forecasting energy consumption for residential buildings in Algeria using bottom-up approach. Energy Build. 121, 309–317 (2016). https://doi.org/10.1016/j.enbuild.2015.12.030

    Article  Google Scholar 

  2. Stitt, M., Hurry, V.: A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr. Opin. Plant Biol. 5(3), 199–206 (2002). https://doi.org/10.1016/S1369-5266(02)00258-3

    Article  Google Scholar 

  3. Xu, J., Li, Y., Wang, R.Z., Liu, W., Zhou, P.: Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates. Appl. Energy 138, 291–301 (2015). https://doi.org/10.1016/j.apenergy.2014.10.061

    Article  Google Scholar 

  4. Ahmed, E.M., Abaas, O., Ahmed, M., Ismail, M.R.: Performance evaluation of three different types of local evaporative cooling pads in greenhouses in Sudan. Saudi J. Biol. Sci. 18, 45–51 (2011). https://doi.org/10.1016/j.sjbs.2010.09.005

    Article  Google Scholar 

  5. Mongkon, S., Thepa, S., Namprakai, P., Pratinthong, N.: Cooling performance and condensation evaluation of horizontal earth tube system for the tropical greenhouse. Energy Build. 66, 104–111 (2013). https://doi.org/10.1016/j.enbuild.2013.07.009

    Article  Google Scholar 

  6. Aljubury, I.M.A., Ridha, H.D.: Enhancement of evaporative cooling system in a greenhouse using geothermal energy. Renew. Energy 111, 321–331 (2017). https://doi.org/10.1016/j.renene.2017.03.080

    Article  Google Scholar 

  7. Lychnos, G., Davies, P.A.: Modelling and experimental verification of a solar-powered liquid desiccant cooling system for greenhouse food production in hot climates. Energy 40, 116–130 (2012). https://doi.org/10.1016/j.energy.2012.02.021

    Article  Google Scholar 

  8. Boughanm, H., Lazaar, M., Bouadila, S., Farhat, A.: Thermal performance of a conic basket heat exchanger coupled to a geothermal heat pump for greenhouse cooling under Tunisian climate. Energy Build. 104, 87–96 (2015). https://doi.org/10.1016/j.enbuild.2015.07.004

    Article  Google Scholar 

  9. Davies, P.A.: A solar cooling system for greenhouse food production in hot climates. Sol. Energy 79, 661–668 (2005). https://doi.org/10.1016/j.solener.2005.02.001

    Article  Google Scholar 

  10. Mogharreb, M.M., Abbaspour-Fard, M.H., Goldani, M., Emadi, B.: The effect of greenhouse vegetation coverage and area on the performance of an earth-to-air heat exchanger for heating and cooling modes. Int. J. Sustain. Eng. 7(3), 245–252 (2014). https://doi.org/10.1080/19397038.2013.811559

    Article  Google Scholar 

  11. Al-ismaili, A.M., Fadel, M.A., Jayasuriya, H., Jeewantha, L.H.J., Al-mahdouri, A., Al-shukeili, T.: Potential reduction in water consumption of greenhouse evaporative coolers in arid areas via earth-tube heat exchangers. J. Arid. Land 13(4), 388–396 (2021). https://doi.org/10.1007/s40333-021-0057-6

    Article  Google Scholar 

  12. Mahdavia, S., Sarhaddia, F., Hedayatizadeh, M.: Energy/exergy based-evaluation of heating/cooling potential of PV/T and earth-air heat exchanger integration into a solar greenhouse. Appl. Therm. Eng. 149, 996–1007 (2019). https://doi.org/10.1016/j.applthermaleng.2018.12.109

    Article  Google Scholar 

  13. Yadav, S., Panda, S.K., Tiwari, G.N., Al-Helal, I.M.: Periodic theory of greenhouse integrated semi-transparent photovoltaic thermal (GiSPVT) system integrated with earth air heat exchanger (EAHE). Renewable Energy 184, 45–55 (2022). https://doi.org/10.1016/j.renene.2021.11.063

    Article  Google Scholar 

  14. Ghosal, M.K., Tiwari, G.N.: Parametric studies for heating performance of an earth to air heat exchanger coupled with a greenhouse. Int. J. Energy Res. 29, 991–1005 (2005). https://doi.org/10.1002/er.1106

    Article  Google Scholar 

  15. Allouhi, A., Choab, N., Hamrani, A., Saadeddine, S.: Machine learning algorithms to assess the thermal behavior of a Moroccan agriculture greenhouse. Clean. Eng. Technol. 5, 100346 (2021). https://doi.org/10.1016/j.clet.2021.100346

    Article  Google Scholar 

  16. Guesbaya, M., GarcíaMa˜na, F., Megherbi, H., Rodríguez, F.: Real-time adaptation of a greenhouse microclimate model using an online parameter estimator based on a bat algorithm variant. Comput. Electr. Agric. 192, 106627 (2022). https://doi.org/10.1016/j.compag.2021.106627

    Article  Google Scholar 

  17. Saiah, S.B.D., Stambouli, A.B.: Prospective analysis for a long-term optimal energy mix planning in Algeria: towards high electricity generation security in 2062. Renew. Sustain. Energy Rev. 73, 26–43 (2017). https://doi.org/10.1016/j.rser.2017.01.023

    Article  Google Scholar 

  18. Mahmud, S., Sadrul Islam, A.K.M.: Laminar free convection and entropy generation inside an inclined wavy enclosure. Int. J. Therm. Sci. 42, 1003–1012 (2003). https://doi.org/10.1016/S1290-0729(03)00076-0

    Article  Google Scholar 

  19. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere McGraw-Hill, Washington, DC (1980)

    MATH  Google Scholar 

  20. Chennouf, N., Negrou, B., Dokkar, B., Settou, N.: Valuation and estimation of geothermal electricity production using carbon dioxide as working fluid in the south of Algeria. Energy Procedia 36, 967–976 (2013). https://doi.org/10.1016/j.egypro.2013.07.110

    Article  Google Scholar 

  21. Chen, W., Liu, W.: Numerical analysis of heat transfer in a passive solar composite wall with porous absorber. Appl. Therm. Eng. 28, 1251–1258 (2008). https://doi.org/10.1016/j.applthermaleng.2007.10.017

    Article  Google Scholar 

  22. De Luca, V., Manera, C., Mazza, S.: Previsione del fabbisogno energetico per l’attività produttiva in serra sul territorio della Basilicata. J. Agric Eng. 3, 162–171 (1996). https://doi.org/10.1016/j.rser.2020.109928

    Article  Google Scholar 

  23. Tittarelli, F., Ortolani, L.:La concimazione carbonica in serra per produzioni biologiche: vantaggi, limiti e sostenibilità. Rome: Relazione Progetto https://www.sinab.it/sites/default/files/C1 (2012)

  24. Jean-Pierre Nadeau: Jean-Rodolphe Puiggali, Séchage: des processus physiques aux procédés industriels, Tec & Doc-Lavoisier, 1995. ISBN 2–7430–0018-X

  25. Angstrom A., A study of the radiation of the atmosphere, Smithsonian Miscellaneous Collection; p. 65, (1918)

  26. Buck, A.: New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol. 20, 1527–1532 (1981)

    Article  Google Scholar 

  27. Penrod, E., Walton, W., Terrell, D.: A method to describe soil temperature variation. J. Soil Mech. Found. Div. 84, 1–21 (1958)

    Article  Google Scholar 

  28. Kasuda, T., Achenbach, P.R.: Earth temperature and thermal diffusivity at selected stations in United States. ASHRAE Trans. 71 (1965). https://nvlpubs.nist.gov/nistpubs/Legacy/RPT/nbsreport8972.pdf

  29. Al-Ajmi, F., Loveday, D.L., Hanby, V.I.: The cooling potential of earth-air heat exchangers for domestic buildings in a desert climate. Build. Environ. 41, 235–244 (2006). https://doi.org/10.1016/j.buildenv.2005.01.027

    Article  Google Scholar 

  30. Ben Jmaa Derbel, H., Kanoun, O.: Investigation of the ground thermal potential in Tunisia focused towards heating and cooling applications. Appl. Therm. Eng. 30, 1091–1100 (2010). https://doi.org/10.1016/j.applthermaleng.2010.01.022

    Article  Google Scholar 

  31. Wu, H., Wang, S., Zhu, D.: Modelling and evaluation of cooling capacity of earth-air- pipe systems. Energy Convers. Manage. 48, 1462–1471 (2007). https://doi.org/10.1016/j.enconman.2006.12.021

    Article  Google Scholar 

  32. Belatrache, D., Bentouba, S., Bourouis, M.: Numerical analysis of earth air heat exchangers at operating conditions in arid climates. Int. J. Hydrogen Energy 42(13), 8898–8904 (2017). https://doi.org/10.1016/j.ijhydene.2016.08.221

    Article  Google Scholar 

  33. S. Thiers, Energy and environmental assessments of positive energy buildings [PhD thesis]. Ecole Nationale Supérieure des Mines de Paris, France, 2008

  34. Bansal, V., Mishra, R., Agrawal, G.D., Mathur, J.: Performance analysis of integrated earth-air-tunnel-evaporative cooling system in hot and dry climate. Energy Build. 47, 525–532 (2012). https://doi.org/10.1016/j.enbuild.2011.12.024

    Article  Google Scholar 

  35. Khenfer, N., Dokkar, B., Messaoudi, M.-T.: Overall efficiency improvement of photovoltaic-thermal air collector: numerical and experimental investigation in the desert climate of Ouargla region. Int. J. Energy Environ. Eng. 11, 497–516 (2020). https://doi.org/10.1007/s40095-020-00353-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boubekeur Dokkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherrad, I., Dokkar, B., Khenfer, N. et al. Cooling improvement of an agricultural greenhouse using geothermal energy in a desert climate. Int J Energy Environ Eng 14, 211–228 (2023). https://doi.org/10.1007/s40095-022-00514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00514-4

Keywords

Navigation