Skip to main content
Log in

Synthesis, characterization and investigation of photocatalytic activity of ZnMnO3/Fe3O4 nanocomposite for degradation of dye Congo red under visible light irradiation

  • Research
  • Published:
International Journal of Industrial Chemistry

Abstract

ZnMnO3/Fe3O4 magnetic nanocomposites were fabricated via facile co-precipitation route and were calcined at 400 °C for 3 h. Synthesis of ZnMnO3/Fe3O4 magnetic nanocomposites were optimized by different weight percentages. Then, the as-synthesized sample was characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), photoluminescence(PL), vibrating Sample Magnetometer (VSM), EDAX (Energy dispersive X-ray analysis), diffuse reflectance UV–Vis spectroscopy (DRS),ultraviolet–visible (UV–Vis) spectrometry, Bruner-Emmett-Teller (BET), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). Based on the results, elemental analyses of the samples were similar to those expected from the initial concentrations of the solutions used during synthesis. The x-ray diffraction pattern revealed that ZnMnO3/Fe3O4 has a cubic structure and average particle size of the catalyst was found 27.43 nm. In addition, Fourier transform infrared spectra could confirm the presence of hydroxyl group and Fe–O bond vibration in the catalyst. Further, the superparamagnetic behavior of the synthesized nanocomposite at room temperature was confirmed by VSM studies. Furthermore, the photocatalytic performance of ZnMnO3/Fe3O4 samples were evaluated based on the removal of Congo red (CR) in aqueous solution in 60 min of under visible light irradiation. The experiment demonstrated that 0.10 g of ZnMnO3/Fe3O4 nanocomposites can degrade (98.17%) 50 mg l−1 of Congo red (CR) solution. The mechanistic study using scavengers propose that the superoxide (O2·−) is the most reactive species involved in the photodegradation of organic dyes. The photocatalytic degradation of Congo red conformed the pseudo-first-order kinetic model and the rate constant achieved for 0.10 g l−1 of ZnMnO3/Fe3O4 was (k = 0.0384 min−1). Finally, the effect of reaction time, pH, and loading of ZnMnO3/Fe3O4 on degrading Congo red was studied. The synthesized ZnMnO3/Fe3O4 nanocomposite can be potentially applied as a magnetically separable photocatalyst to deal with water pollution problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Forgacs E, Cserháti T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971. https://doi.org/10.1016/j.envint2004.02.001

    Article  CAS  PubMed  Google Scholar 

  2. Xu Y, Xu H, Li H, Xia J, Liu C, Liu L (2011) Enhanced photocatalytic activity of new photocatalyst Ag/AgCl/ZnO. J AlloysCompd 509:3286–3292. https://doi.org/10.1016/j.jallcom.2010.11.193

    Article  CAS  Google Scholar 

  3. Firooz AA, Mahjoub AR, Khodadadi AA, Movahedi M (2010) High photocatalytic activity of Zn-2SnO4 among various nanostructures of Zn2xSn1−xO2 prepared by a hydrothermal method. Chem Eng J 165:735–739. https://doi.org/10.1016/j.cej.2010.09.052

    Article  CAS  Google Scholar 

  4. Yasstepe E, Yatmaz HC, Ozturk C, Ozturk O, Duran C (2008) Photocatalytic efficiency of ZnO plates in degradation of azo dye solutions. J Photochem Photobiol A Chem 198:1–6. https://doi.org/10.1016/jphotochem.2008.02.007

    Article  Google Scholar 

  5. Namasivayam C, Arasi DJSE (1997) Removal of Congo red from wastewater by adsorption onto waste red mud. Chemosphere 34:401–417. https://doi.org/10.1016/S0045-6535(96)00385-2

    Article  CAS  Google Scholar 

  6. Mittal A, Mittal J, Malviya A, Gupta VK (2009) Adsorptive removal of hazardous anionic dye Congo red from wastewater using waste materials and recovery by desorption. J Colloid Interface Sci 340:16–26. https://doi.org/10.1016/j.jcis.2009.08.019

    Article  CAS  PubMed  Google Scholar 

  7. Hairom NHH, Mohammad AW, Kadhum AAH (2014) Nanofiltration of hazardous Congo red dye: performance andflux decline analysis. J Water Process Eng 4:99–106. https://doi.org/10.1016/j.jwpe.2014.09.008

    Article  Google Scholar 

  8. Walker GM, Weatherley LR (1997) Adsorption of acid dyes on togranular activated carbon in fixed beds. Water Res 31:2093–2101. https://doi.org/10.1016/S0043-1354(97)00039-0

    Article  CAS  Google Scholar 

  9. Malik PK, Sanyal SK (2004) Kinetics of decolourisation of azodyes in wastewater by UV/H2O2 process. Sep Purif Technol 36:167–175. https://doi.org/10.1016/S1383-5866(03)00212-0

    Article  CAS  Google Scholar 

  10. Liu X, Zhao C, Zhang H, Shen Q (2015) Facile synthesis of porous ZnMnO3 spherulites with a high lithium storage capability. Electrochim Acta 151:56–62. https://doi.org/10.1016/j.electacta.2014.11.020

    Article  CAS  Google Scholar 

  11. Peiteado M, Caballero AC, Makovec D (2007) Phase evolution of Zn1−xMnxO system synthesized via oxalate precursors. J Euro Ceram ScI 27:3915–3918. https://doi.org/10.1016/j.jeurceramsoc.2007.02.062

    Article  CAS  Google Scholar 

  12. Jacimovi J, Mickovi Z, Gaal R, Smajda R, Vaju C, Sienkiewicz C, Forro A, Magrez A (2011) Synthesis, electrical resistivity, thermo-electric power and magnetization of cubic ZnMnO3. Solid State Commun 151:487–490. https://doi.org/10.1016/j.ssc.2010.12.025

    Article  CAS  Google Scholar 

  13. Zhou L, Wu HB, Zhu T, Lou XW (2012) Facile preparation of ZnMn2O4 hollow microspheres as high-capacity anodes for lithium-ion batteries. J Mater Chem 22:827–829. https://doi.org/10.1039/C1JM15054E

    Article  CAS  Google Scholar 

  14. Kang M, Park ED, Kim JM, Yie JE (2007) Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl Cats A Gen 327:261–269. https://doi.org/10.1016/j.apcata.2007.05.024

    Article  CAS  Google Scholar 

  15. Gupta VK, Yola ML, Atar N (2014) A novel molecular imprinted nanosensor based quartz crystal microbalance for determination of kaempferol. Sensors Actuators B Chem 194:79–85

    Article  CAS  Google Scholar 

  16. Balu AM, Baruwati B, Serrano E, Cot J, Garcia-Martinez J, Varma RS, Luque R (2011) Magnetically separable nanocomposites with photocatalytic activity under visible light for the selective transformation of biomass-derived platform molecules. Green Chem 13:2750–2758

    Article  CAS  Google Scholar 

  17. Gupta VK, Yola ML, Eren T, Kartal F, Calayan MO, Atar N (2014) Catalytic activity of Fe@ Ag nanoparticle involved calcium alginate beads for the reduction of nitrophenol. J Mol Liq 190:133–138

    Article  CAS  Google Scholar 

  18. Sobhani-Nasab A, Pourmasoud S, Ahmadi F, Wysokowski M, Jesionowski T, Ehrlich H, Rahimi-Nasrabadi M (2019) Synthesis and characterization of MnWO4/TmVO4 ternary nano-hybrids by an ultrasonic method for enhanced photocatalytic activity in the degradation of organic dyes. Mater Lett 238:159–162

    Article  CAS  Google Scholar 

  19. Kooshki H, Sobhani-Nasab A, Eghbali-Arani M, Ahmadi F, Ameri V, Rahimi-Nasrabadi M (2019) Eco-friendly synthesis of PbTiO3 nanoparticles and PbTiO3/carbon quantum dots binary nano-hybrids for enhanced photocatalytic performance under visible light. Sep Purif Technol 211:873–881

    Article  CAS  Google Scholar 

  20. Sobhani-Nasab A, Behpour M, Rahimi-Nasrabadi M, Ahmadi F, Pourmasoud S, Sedighi F (2019) Preparation, characterization and investigation of sonophotocatalytic activity of thulium titanate/polyaniline nanocomposites in degradation of dyes. Ultrason Sonochem 50:46–58

    Article  CAS  Google Scholar 

  21. Sedighi F, Esmaeili-Zare M, Sobhani-Nasab A, Behpour M (2018) Synthesis and characterization of CuWO4 nanoparticle and CuWO4/NiO nanocomposite using co-precipitation method; application in photodegradation of organic dye in water. J Mater Sci Mater Electron 29(16):13737–13745

    Article  CAS  Google Scholar 

  22. Eghbali-Arani M, Sobhani-Nasab A, Rahimi-Nasrabadi M, Ahmadi F, Pourmasoud S (2018) Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason Sonochem 43:120–135

    Article  CAS  Google Scholar 

  23. Das RS, Warkhade SK, Kumar A, Wankhade AV (2019) Graphene oxide-based zirconium oxide nanocomposite for enhanced visible light-driven photocatalytic activity. Res Chem Intermed 45(4):1689–1705

    Article  CAS  Google Scholar 

  24. Borhade AV, Tope DR, Dabhade GB (2017) Removal of erioglaucine dye from aqueous medium using ecofriendly synthesized ZnMnO3 photocatalyst. J Surface Sci nanotech 15:74–80. https://doi.org/10.1380/ejssnt.2017.74

    Article  CAS  Google Scholar 

  25. Gupta VK, Eren T, Atar N, Lütfi Yola M, Parlak C, Karimi-Maleh H (2015) CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J Mol Liq 208:122–129

    Article  Google Scholar 

  26. Aslibeiki B, Kameli P, Salamati H (2013) The role of Ag on dynamics of superspins in MnFe2−xAg xO4 nanoparticles. J Nanoparticle Res 15:1–12. https://doi.org/10.1007/s11051-013-1430-y

    Article  CAS  Google Scholar 

  27. Finocchio E, Cristiani C, Dotelli G, Stampino PG, Zampori L (2014) Thermal evolution of PEG-based andBRIJ-based hybrid organo-inorganic materials. FT-IR Stud Vib Spectrosc 71:47–56. https://doi.org/10.1016/j.vibspec.2013.12.010

    Article  CAS  Google Scholar 

  28. Ba-Abbad MM, Kadhum AAH, Mohamad AB, Takriff MS, Sopian K (2013) The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol–gel technique. J Alloys Compd 550:63–70. https://doi.org/10.1016/j.jallcom.2012.09.076

    Article  CAS  Google Scholar 

  29. Waldron RD (1955) Infrared spectra of ferrites. Phys Rev J Archive Rev 99:1727

    Article  CAS  Google Scholar 

  30. Naseri MG, Saion EB (2012) Crystalization in spinel ferrite nanoparticles. Adv Crystall Process. https://doi.org/10.5772/35731

    Article  Google Scholar 

  31. Asgari S, Fakhari Z, Berijani S (2014) Synthesis and characterization of Fe3O4 magnetic nanoparticles coated with carboxymethyl chitosan grafted sodium methacrylate. J Nanostruct 4(1):55–63

    Google Scholar 

  32. El-Sayed AM, Hamzawy EMA (2006) Structure and magnetic properties of nickel-zinc ferrite nanoparticles prepared by glass crystallization method. Chem Mon 137:1119–1125. https://doi.org/10.1007/s00706-006-0521-1

    Article  CAS  Google Scholar 

  33. Sathishkumar P, Mangalaraja RV, Anandan S, Ashokkumar M (2013) CoFe2O4/TiO2 nanocatalysts for the photocatalytic degradation of reactive Red 120 in aqueous solutions in the presence and absence of electron acceptors. Chem Eng J 220:302–310

    Article  CAS  Google Scholar 

  34. Guo H, Chen J, Weng W, Wang Q, Li S (2014) Facile template-free one-pot fabrication of ZnCo2O4 microspheres with enhanced photocatalytic activities under visible-light illumination. Chem Eng J 239:192–199

    Article  CAS  Google Scholar 

  35. Kamakshi T, Sundari GS, Erothu H, Rao TP (2018) Synthesis and characterization of graphene based iron oxide (Fe3O4) nanocomposites. Rasayan J Chem 11(3):1113–1119

    Article  CAS  Google Scholar 

  36. Liu X, Chen C, Zhao Y, Jia B (2013) A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J Nanomater 2013:736375

    Google Scholar 

  37. Srivastava V, Singh P, Weng C, Sharma Y (2011) Economically viable synthesis of Fe3O4 nanoparticles and their characterization. Polish J Chem Technol 13(2):1–5

    Article  Google Scholar 

  38. Karthik R, Kumar JV, Chen S-M, Kumar PS, Selvam V, Muthuraj V (2017) A selective electrochemical sensor for caffeic acid and photocatalyst for metronidazole drug pollutant—a dual role by rodlikeSrV 2 O 6. Sci Rep 7:7254

    Article  CAS  Google Scholar 

  39. Arunadevi A, Kavitha B, Rajarajan M, Suganthi A, Jeyamurugan A (2018) Investigation of the drastic improvement of photocatalytic degradation of Congo red by monoclinic Cd, Ba-CuO nanoparticles and its antimicrobial activities. Surf Interfaces 10:32

    Article  CAS  Google Scholar 

  40. Chin BO, Mohammad AW, Rohani R, Ba-Abbad MM, Hairom NHH (2016) solar photocatalytic degration of hazardous congo red using low- temperature synthesise of zinc oxide nanoparticles. Process Saf Environ Protect 104:549–557. https://doi.org/10.1016/j.psep.2016-04-006

    Article  Google Scholar 

  41. Shinde DR, Tambade PS, Chaskar MG, Gadave KM (2017) Photocatalytic degradation of dyes in water by analytical reagent grades ZnO, TiO2 and SnO2: a comparative study. Drink Water Eng Sci 10(2):109–117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank science and research Branch, Islamic Azad University Tehran for supporting this study and Iran Nanotechnology Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirabdullah Seyed Sadjadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, A., Sadjadi, M.S., Mahjoub, A. et al. Synthesis, characterization and investigation of photocatalytic activity of ZnMnO3/Fe3O4 nanocomposite for degradation of dye Congo red under visible light irradiation. Int J Ind Chem 11, 205–216 (2020). https://doi.org/10.1007/s40090-020-00215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40090-020-00215-z

Keywords

Navigation