Skip to main content
Log in

A review on structural and magnetic properties of magnesium ferrite nanoparticles

  • Review
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

The microstructural properties and magnetic signature of magnesium ferrite nanoparticles are discussed in this review. The main purpose of the analysis is to focus on different synthesis methods, change in pH (hydrogen potential), change in annealing temperature (calcinations temperature: 400–1000 °C), change in dopant concentration and change in surfactant (PVP, PVA and PEG). pH values (9–11) are essential for obtaining fine nanoparticles and for adjusting the positively charged surface of the absorbent material. Also, more attraction to complex negatively charged ions. Magnetic signatures of magnetic materials are classified using annealing temperature. The structural and magnetic parameters were most affected by the annealing temperature. In composite materials of magnetic signature tuned by surfactant, non-magnetic clouds separate the magnetic fields. The surfactant primarily induces a decrease in concentration magnetization (Ms) and residual magnetization (Mr). The change in pH, annealing temperature, surfactant change and dopant concentration in magnesium ferrite compounds cause charge imbalance. Therefore, oxygen vacancies are created to increase the dopant levels and annealing temperature. Most of the magnesium ferrite research articles support superparamagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hussein, S.I., Elkady, A.S., Rashad, M.M., Mostafa, A.G., Megahid, R.M.: Structural and magnetic properties of magnesium ferrite nanoparticles prepared via EDTA-based sol–gel reaction. J. Magn. Magn. Mater. 379, 9–15 (2015). https://doi.org/10.1016/j.jmmm.2014.11.079

    Article  CAS  Google Scholar 

  2. GoodarzNaseri, M., Ara, M.H.M., Saion, E.B., Shaari, A.H.: Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method. J. Magn. Magn. Mater. 350, 141–147 (2014). https://doi.org/10.1016/j.jmmm.2013.08.032

    Article  CAS  Google Scholar 

  3. Ichiyanagi, Y., Kubota, M., Moritake, S., Kanazawa, Y., Yamada, T., Uehashi, T.: Magnetic properties of Mg-ferrite nanoparticles. J. Magn. Magn. Mater. 310(2), 2378–2380 (2007). https://doi.org/10.1016/j.jmmm.2006.10.737

    Article  CAS  Google Scholar 

  4. Sagayaraj, R., Aravazhi, S., Selva-kumar, C., Senthil-kumar, S., Chandrasekaran, G.: Tuning of ferrites (CoxFe3-xO4) nanoparticles by co-precipitation technique. SN Appl. Sci. 1(3), 271 (2019)

    Article  Google Scholar 

  5. Sharon, V.S., Gopalan, V.E., Al-Omari, I.A., Malini, K.A.: Superparamagnetic nickel ferrite nanoparticles doped with zinc by modified sol–gel method. J. Supercond. Nov. Magn. (2022). https://doi.org/10.1007/s10948-021-06110-7

    Article  Google Scholar 

  6. Pawar, D.B., Khirade, P.P., Vinayak, V., et al.: Sol–gel auto-ignition fabrication of Gd3+ incorporated Ni0.5Co0.5Fe2O4 multifunctional spinel ferrite nanocrystals and its impact on structural, optical and magnetic properties. SN Appl. Sci. 2, 1713 (2020). https://doi.org/10.1007/s42452-020-03505-4

    Article  CAS  Google Scholar 

  7. Heiba, Z.K., Sanad, M.M.S., Mohamed, M.B.: Influence of Mg-deficiency on the functional properties of magnesium ferrite anode material. Solid State Ion. 341, 115042 (2019). https://doi.org/10.1016/j.ssi.2019.115042

    Article  CAS  Google Scholar 

  8. Šepelák, V., Menzel, M., Becker, K.D., Krumeich, F.: Mechanochemical reduction of magnesium ferrite. J. Phys. Chem. B 106(26), 6672–6678 (2002). https://doi.org/10.1021/jp020270z

    Article  CAS  Google Scholar 

  9. Mostafa, N.Y., Zaki, Z., Hessien, M.M., Shaltout, A.A., Alsawat, M.: Enhancing saturation magnetization of Mg ferrite nanoparticles for better magnetic recoverable photocatalyst. Appl. Phys. A 124, 12 (2018). https://doi.org/10.1007/s00339-018-2268-z

    Article  CAS  Google Scholar 

  10. Chen, D., LiZhang, D.Y., Kang, Z.: Preparation of magnesium ferrite nanoparticles by ultrasonic wave-assisted aqueous solution ball milling. Ultrason. Sonochem. 20(6), 1337–1340 (2013). https://doi.org/10.1016/j.ultsonch.2013.04.001

    Article  CAS  Google Scholar 

  11. Sumangala, T.P., Mahender, C., Venkataramani, N., Prasad, S.: A study of nanosized magnesium ferrite particles with high magnetic moment. J. Magn. Magn. Mater. 382, 225–232 (2015). https://doi.org/10.1016/j.jmmm.2015.01.056

    Article  CAS  Google Scholar 

  12. Das, H., Sakamoto, N., Aono, H., Shinozaki, K., Suzuki, H., Wakiya, N.: Investigations of superparamagnetism in magnesium ferrite nano-sphere synthesized by ultrasonic spray pyrolysis technique for hyperthermia application. J. Magn. Magn. Mater. 392, 91–100 (2015). https://doi.org/10.1016/j.jmmm.2015.05.029

    Article  CAS  Google Scholar 

  13. Durrani, S.K., Naz, S., Mehmood, M., Nadeem, M., Siddique, M.: Structural, impedance and Mössbauer studies of magnesium ferrite synthesized via sol–gel auto-combustion process. J. Saudi Chem. Soc. 21(8), 899–910 (2017). https://doi.org/10.1016/j.jscs.2015.12.006

    Article  CAS  Google Scholar 

  14. Sumangala, T.P., Mahender, C., Sahu, B.N., Venkataramani, N., Prasad, S.: Study of magnesium ferrite nano particles with excess iron content. Phys. B 448, 312–315 (2014)

    Article  CAS  Google Scholar 

  15. Maensiri, S., Sangmanee, M., Wiengmoon, A.: Magnesium Ferrite (MgFe2O4) nanostructures fabricated by electrospinning. Nanoscale Res. Lett. 4(3), 221–228 (2008)

    Article  Google Scholar 

  16. Sagayaraj, R., Aravazhi, S., Chandrasekaran, G.: Synthesis, spectroscopy, and magnetic characterizations of PVP-assisted nanoscale particle. J. Supercond. Novel Magn. (2018). https://doi.org/10.1007/s10948-018-4593-z

    Article  Google Scholar 

  17. Jaiswal, A.K., Sikarwar, S., Singh, S., Dey, K.K., Yadav, B.C., Yadav, R.R.: Fabrication of nanostructured magnesium ferrite polyhedrons and their applications in heat transfer management and gas/humidity sensors. J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01099-1

    Article  Google Scholar 

  18. Zheng, L., Fang, K., Zhang, M., Nan, Z., Zhao, L., Zhou, D., Li, W., et al.: Tuning of spinel magnesium ferrite nanoparticles with enhanced magnetic properties. RSC Adv. 8(68), 39177–39181 (2018). https://doi.org/10.1039/c8ra07487a

    Article  CAS  Google Scholar 

  19. Franco, A., Silva, M.S.: High temperature magnetic properties of magnesium ferrite nanoparticles. J. Appl. Phys. 109(7), 07B505 (2011). https://doi.org/10.1063/1.3536790

    Article  CAS  Google Scholar 

  20. Ghomi, J.S., Akbarzadeh, Z.: Ultrasonic accelerated Knoevenagel condensation by magnetically recoverable MgFe2O4 nanocatalyst: a rapid and green synthesis of coumarins under solvent-free conditions. Ultrason. Sonochem. 40, 78–83 (2018). https://doi.org/10.1016/j.ultsonch.2017.06.022

    Article  CAS  Google Scholar 

  21. Shahjuee, T., Masoudpanah, S.M., Mirkazemi, S.M.: Thermal decomposition synthesis of MgFe2O4 nanoparticles for magnetic hyperthermia. J. Supercond. Novel Magn. (2018). https://doi.org/10.1007/s10948-018-4834-1

    Article  Google Scholar 

  22. Bououdina, M., Al-Najar, B., Falamarzi, L., Judith-Vijaya, J., Shaikh, M.N., Bellucci, S.: Effect of annealing on phase formation, microstructure and magnetic properties of MgFe2O4 nanoparticles for hyperthermia. Eur. Phys. J. Plus 134, 3 (2019). https://doi.org/10.1140/epjp/i2019-12485-5

    Article  CAS  Google Scholar 

  23. Sripriya, R.C., Mahendiran, M., Madahavan, J., Raj, V.A.M.: Enhanced magnetic properties of MgFe2O4 nanoparticles. Mater. Today Proc. 8, 310–314 (2019). https://doi.org/10.1016/j.matpr.2019.02.116

    Article  CAS  Google Scholar 

  24. Eshtehardian, B., Rouhani, M., Mirjafary, Z.: Green protocol for synthesis of MgFe2O4 nanoparticles and study of their activity as an efficient catalyst for the synthesis of chromene and pyran derivatives under ultrasound irradiation. J. Iran. Chem. Soc. (2019). https://doi.org/10.1007/s13738-019-01783-3

    Article  Google Scholar 

  25. Pendyala, S.K., Thyagarajan, K., Gurusampath Kumar, A., Obulapathi, L.: Investigations on physical properties of Mg ferrite nanoparticles for microwave applications. J. Microw. Power Electromagn. Energy. (2019). https://doi.org/10.1080/08327823.2019.1569898

    Article  Google Scholar 

  26. Joulaei, M., Hedayati, K., Ghanbari, D.: Investigation of magnetic, mechanical and flame retardant properties of polymeric nanocomposites: green synthesis of MgFe2O4 by lime and orange extracts. Compos. B Eng. (2019). https://doi.org/10.1016/j.compositesb.2019.107345

    Article  Google Scholar 

  27. Heiba, Z.K., Mohamed, M.B.: Effect of magnesium deficiency on magnetic properties tuning and cation redistributions of magnesium ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-0348-7

    Article  Google Scholar 

  28. Thankachan, S., Xavier, S., Jacob, B., Mohammed, E.M.: A comparative study of structural, electrical and magnetic properties of magnesium ferrite nanoparticles synthesised by sol-gel and co-precipitation techniques. J. Exp. Nanosci. 8(3), 347–357 (2013). https://doi.org/10.1080/17458080.2012.690892

    Article  CAS  Google Scholar 

  29. Singh, R.P., Venkataraju, C.: Effect of calcinations on the structural and magnetic properties of magnesium ferrite nanoparticles prepared by sol gel method. Chin. J. Phys. (2018). https://doi.org/10.1016/j.cjph.2018.07.005

    Article  Google Scholar 

  30. Hammache, Z., Soukeur, A., Omeiri, S., Bellal, B., Trari, M.: Physical and photo-electrochemical properties of MgFe2O4 prepared by sol gel route: application to the photodegradation of methylene blue. J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-00830-2

    Article  Google Scholar 

  31. Argish, V., Chithra, M., Anumol, C.N., Sahu, B.N., Sahoo, S.C.: Magnetic studies of magnesium ferrite nanoparticles prepared by sol-gel technique. AIP Conf. Proc. (2015). https://doi.org/10.1063/1.4917736

    Article  Google Scholar 

  32. Verma, B., Balomajumder, C.: Magnetic magnesium ferrite–doped multi-walled carbon nanotubes: an advanced treatment of chromium-containing wastewater. Environ. Sci. Pollut. Res. (2020). https://doi.org/10.1007/s11356-020-07988-x

    Article  Google Scholar 

  33. Tang, W., Su, Y., Li, Q., Gao, S., Shang, J.K.: Mg-doping: a facile approach to impart enhanced arsenic adsorption performance and easy magnetic separation capability to α-Fe2O3nanoadsorbents. J. Mater. Chem. A 1(3), 830–836 (2013). https://doi.org/10.1039/c2ta00271j

    Article  CAS  Google Scholar 

  34. Andrei, I., Marina, R., Varsha, S., Vladimir, P., Tetiana, D., Svitlana, N., Vladimir, P., Ahmad, H.-B., Hai, N.T., Mika, S.: Effct of metal ions adsorption on the effiency of methylene blue degradation onto MgFe2O4 as Fenton-like catalysts. Colloids Surf. A 571(2019), 17–26 (2019). https://doi.org/10.1016/j.colsurfa.2019.03.071

    Article  CAS  Google Scholar 

  35. Manikandan, M., Manimuthu, P., Venkateswaran, C.: Structural and magnetic properties of MgFe2O4 ceramic. AIP Conf. Proc. (2014). https://doi.org/10.1063/1.4862018

    Article  Google Scholar 

  36. Thompson, Z., Rahman, S., Yarmolenko, S., Sankar, J., Kumar, D., Bhattarai, N.: Fabrication and characterization of magnesium ferrite-based PCL/Aloe vera nanofibers. Materials 10(8), 937 (2017). https://doi.org/10.3390/ma10080937

    Article  CAS  Google Scholar 

  37. Udhayan, S., Udayakumar, R., Sagayaraj, R., Gurusamy, K., et al.: Evaluation of bioactive potential of a tragia involucrata healthy leaf extract @ ZnO nanoparticles. BioNanoSci. 11, 703–719 (2021). https://doi.org/10.1007/s12668-021-00864-z

    Article  Google Scholar 

  38. Sagayaraj, R., Aravazhi, S., Chandrasekaran, G.: Microstructure and magnetic properties of Cu0.5Co0.3Mo0.2Fe2O4 ferrite nanoparticles synthesized by Coprecipitation method. Appl. Phys. A 127(7), 502 (2021). https://doi.org/10.1007/s00339-021-04653-z

    Article  CAS  Google Scholar 

  39. Sagayaraj, R., Aravazhi, S., Chandrasekaran, G.: Review on structural and magnetic properties of (Co–Zn) ferrite nanoparticles. Int. Nano Lett. 11(4), 307–319 (2021). https://doi.org/10.1007/s40089-021-00343-z

    Article  CAS  Google Scholar 

  40. Sagayaraj, R., Jegadheeswari, M., Aravazhi, S., Chandrasekaran, G., Dhanalakshmi, A.: Structural, spectroscopic and magnetic study of nanocrystalline terbium-nickel ferrite by oxalate co-precipitation method. Chem. Afr. 3, 955–963 (2020)

    Article  CAS  Google Scholar 

  41. Sagayaraj, R., Dhineshkumar, T., Prakash, A., Aravazhi, S., Chandrasekaran, G., Jayarajan, D., Sebastian, S.: Fabrication, microstructure, morphological and magnetic properties of W-type ferrite by co-precipitation method: antibacterial activity. Chem. Phys. Lett. 759, 137944 (2020)

    Article  CAS  Google Scholar 

  42. Peng, X., Xu, D., Yang, X., Zhang, Z., Ren, G., Yang, L., Wang, X., et al.: A new green synthesis method of magnesium ferrite from ferrous sulfate waste. J. Alloy. Compd. 756, 117–125 (2018). https://doi.org/10.1016/j.jallcom.2018.05.006

    Article  CAS  Google Scholar 

  43. Thanh, N.K., Loan, T.T., Duong, N.P., Anh, L.N., Nguyet, D.T.T., Nam, N.H., Hien, T.D., et al.: Cation distribution assisted tuning of magnetization in nanosized magnesium ferrite. Phys. Status Solidi (a) 215(1), 1700397 (2017). https://doi.org/10.1002/pssa.201700397

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author thank PG & Research Department of Physics, St. Joseph’s College of Arts and Science (Autonomous), Cuddalore—607001, Tamil Nadu, India for providing Library facility.

Funding

The authors received no funding from any of the agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sagayaraj.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagayaraj, R. A review on structural and magnetic properties of magnesium ferrite nanoparticles. Int Nano Lett 12, 345–350 (2022). https://doi.org/10.1007/s40089-022-00368-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-022-00368-y

Keywords

Navigation