Skip to main content
Log in

Dynamics of complex impedance, dielectric and electric modulus for NiCuZn ferrites with theoretical justification

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

Ni0.80-xCu0.20ZnxFe2O4 (step size 0.05) with titular compiled chemical of various spinel ferrites have been synthesized through auto-combustion and characterized through X-ray diffraction for structural analysis which showed 43 to 46 nm distributed cubic spinel. The effect of Zn2+ substitutions to dilute the NiCuZn ferrites has been studied with electrical modulus analysis and impedance measurements within the frequency range from 20 to 5 MHz. Besides semicircular arc tendency, two-layer leaky capacitor model is indicated by the complex impedance spectroscopy at lower- and higher-frequency ranges. Non-Debye type relaxation has been revealed clearly in the electric modulus spectra. Non-Debye type dielectric nature is found in the dielectric spectrum and checked by the Non-modified Debye equation. The AC conductivity spectrum is found in increasing order and justified by theoretical Jonscher Power Law. The Cole–Cole plots confirm the single semicircles for grain boundary contribution at the lower-frequency zone, which is further justified by the theoretical model. The role of Zn in modifying nanostructure and impedance spectra of these ferrites has been explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Data sharing is not applicable to this article as all raw data were generated by the authors.

References

  1. Valenzuela, R.: Novel applications of ferrites. Phys. Res. Int. 2012, 9 (2012)

    Article  Google Scholar 

  2. Sugimoto, M.: The past, present, and future of ferrites. J. Am. Ceram. Soc. 82, 269–280 (1999)

    Article  CAS  Google Scholar 

  3. Coey, J.M.D.: Magnetism in future. J. Magn. Magn. Mater. 226–230, 2107–2112 (2001)

    Article  Google Scholar 

  4. Batoo, K.M., Ansari, M.S.: Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications. Nanoscale Res. Lett. 7, 112 (2012)

    Article  Google Scholar 

  5. Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Nanoscale Magn. Mater. Appl. 36, 167–181 (2003)

    Google Scholar 

  6. Costa, M.M., Pires, G.F.M., Terezo, A.J., Graa, M.P.F., Sombra, A.S.B.: Impedance and modulus studies of magnetic ceramic oxide Ba 2 Co 2 Fe 12 O 22 (Co2 Y) doped with Bi 2 O 3. J. Appl. Phys. 110, 034107 (2011)

    Article  Google Scholar 

  7. Peláiz-Barranco, A., Gutiérrez-Amador, M.P., Huanosta, A., Valenzuela, R.: Phase transitions in ferrimagnetic and ferroelectric ceramics by ac measurements. Appl. Phys. Lett. 73, 2039–2041 (1998)

    Article  Google Scholar 

  8. Farea, A.M.M., Kumar, S., Mujasam Batoo, K., Yousef Alimuddin, A.: Influence of frequency, temperature and composition on electrical properties of polycrystalline Co0. 5CdxFe2. 5− xO4 ferrites. Phys. B Condens. Matter 403, 684–701 (2008)

    Article  CAS  Google Scholar 

  9. Aruna, S.T., Mukasyan, A.S.: Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 12, 44–50 (2008)

    Article  CAS  Google Scholar 

  10. Schaefer, H.-E., Kisker, H., Kronmuller, H., Wurschum, R.: Magnetic properties of nanocrystalline nickel. Nanostruct. Mater. 1, 523–529 (1992)

    Article  CAS  Google Scholar 

  11. Mahmood, M.F., Hossen, M.B.: Dynamic response of electrical, dielectric and magnetic properties of La-substituted Ni-Cu-Cd bulk ceramics with structural rietveld refinement. J. Mater. Sci.: Mater. Electron. 32, 14248–14273 (2021)

    CAS  Google Scholar 

  12. Momma, K., Izumi, F.: VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008)

    Article  CAS  Google Scholar 

  13. Rahaman, M.D., Dalim Mia, M., Khan, M.N.I., Akther Hossain, A.K.M.: Study the effect of sintering temperature on structural, microstructural and electromagnetic properties of 10% Ca-doped Mn0.6Zn0.4Fe2O4. J. Magn. Magn. Mater. 404, 238–249 (2016)

    Article  CAS  Google Scholar 

  14. Chandran, A., George, K.C.: Defect induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods. J. Nanopart. Res. 16, 2238 (2014)

    Article  Google Scholar 

  15. Vinila, V.S., Isac, J.: Temperature and frequency dependence of dielectric properties of superconducting ceramic GdBa2Ca3Cu4O10. 5. Int. J. Sci. Res. 7, 696–703 (2018)

    Google Scholar 

  16. Rayssi, C., El Kossi, S., Dhahri, J., Khirouni, K.: Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca 0.85 Er 0.1 Ti 1−x Co 4x/3 O 3 (0 ≤x≤ 0.1. RSC Adv. 8, 17139–17150 (2018)

    Article  CAS  Google Scholar 

  17. Abdullah Dar, M., Majid, K., Batoo, K.M., Kotnala, R.K.: Dielectric and Impedance Study of Polycrystalline Li0.35-0.5XCd0.3NiXFe2.35-0.5XO4 Ferrites Synthesized via a Citrate-Gel Auto Combustion Method. Elsevier (2015)

    Google Scholar 

  18. Koops, C.G.: On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. (1951). https://doi.org/10.1103/PhysRev.83.121

    Article  Google Scholar 

  19. Chauhan, L., Shukla, A.K., Sreenivas, K.: Dielectric and magnetic properties of Nickel ferrite ceramics using crystalline powders derived from DL alanine fuel in sol–gel auto-combustion. Ceram. Int. 41, 8341–8351 (2015)

    Article  CAS  Google Scholar 

  20. Maxwell, J.C.: A treatise of electricity and magnetism. Clarendon Press, Oxford (1873)

    Google Scholar 

  21. Wagner, K.W.: Zur Theorie der Unvollkommenen Dielektrika. Annalen der Physik 40, 817–855 (1913)

    Article  Google Scholar 

  22. MurthySobhandar, V.R.K.M.J.: Dielectric prowrties of some nickel-zinc ferrites at radio frequency. Phys. Stat. Sol. A. 36(2), 133–135 (1976)

    Article  Google Scholar 

  23. Gul, I.H., Pervaiz, E.: Comparative study of NiFe2−xAlxO4 ferrite nanoparticles synthesized by chemical co-precipitation and sol–gel combustion techniques. Mater. Res. Bull. 47, 1353–1361 (2012)

    Article  CAS  Google Scholar 

  24. Grosse, C.: Comparative study of NiFe2−xAlxO4 ferrite nanoparticles synthesized by chemical co-precipitation and sol–gel combustion techniques. J. Colloid Interface Sci. 419, 102–106 (2014)

    Article  CAS  Google Scholar 

  25. Costa, M.M., Pires Júnior, G.F.M., Sombra, A.S.B.: Dielectric and impedance properties’ studies of the of lead doped (PbO)-Co2Y type hexaferrite (Ba2Co2Fe12O22 (Co2Y)). Mater. Chem. Phys. 123, 35–39 (2010)

    Article  CAS  Google Scholar 

  26. Chowdari, B.V.R., Gopalakrishnan, R.: ac conductivity analysis of glassy silver iodomolybdate system. Solid State Ionics 23, 225–233 (1987)

    Article  CAS  Google Scholar 

  27. Padmasree, K.P., Kanchan, D.K., Kulkarni, A.R.: Impedance and Modulus studies of the solid electrolyte system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)], where 1≤x/y≤3. Solid State Ionics 177, 475–482 (2006)

    Article  CAS  Google Scholar 

  28. Behera, B., Nayak, P., Choudhary, R.N.P.: Impedance spectroscopy study of NaBa2V5O15 ceramic. J. Alloy. Compd. 436, 226–232 (2007)

    Article  CAS  Google Scholar 

  29. Dutta, A., Sinha, T.P., Shannigrahi, S.: Dielectric relaxation and electronic structure of Ca (Fe 1∕ 2 Sb 1∕ 2) O 3. Phys. Rev. B 76, 155113 (2007)

    Article  Google Scholar 

  30. Shukla, A., Choudhary, R.N.P.: Impedance and modulus spectroscopy characterization of La+3/Mn+4 modified PbTiO3 nanoceramics. Curr. Appl. Phys. 11, 414–422 (2011)

    Article  Google Scholar 

  31. Bagum, A., Hossen, M.B., Chowdhury, F.-U.-Z.: Complex impedance and electric modulus studies of Al substituted Co0. 4Cu0. 2Zn0. 4AlxFe2-xO4 ferrites prepared by auto combustion technique. Ferroelectrics 494, 19–32 (2016)

    CAS  Google Scholar 

  32. Bellad, S.S., Chougule, B.K.: Composition and frequency dependent dielectric properties of Li–Mg–Ti ferrites. Mater. Chem. Phys. 66, 58–63 (2000)

    Article  CAS  Google Scholar 

  33. Hossen, M.B., Hossain, A.K.M.A.: Structural and dynamic electromagnetic properties of Ni0.27Cu0.10Zn0.63AlxFe2−xO4. J. Magn. Magn. Mater. 387, 24–36 (2015)

    Article  CAS  Google Scholar 

  34. MacDonald, J.R.: Comparison of the universal dynamic response power-law fitting model for conducting systems with superior alternative models. Solid State Ionics 133, 79–97 (2000)

    Article  CAS  Google Scholar 

  35. Hajlaoui, M.E., Dhahri, R., Hnainia, N., Benchaabane, A., Dhahri, E., Khirouni, K.: Conductivity and giant permittivity study of Zn 0.5 Ni 0.5 Fe 2 O 4 spinel ferrite as a function of frequency and temperature. RSC Adv. 9, 32395–32402 (2019)

    Article  CAS  Google Scholar 

  36. Zonge, K.L., Wynn, J.C.: Recent advances and applications in complex resistivity measurements. Geophysics 40, 851–864 (1975)

    Article  Google Scholar 

  37. Farea, A.M.M., Kumar, S., Batoo, K.M., Yousef, A., Lee, C.G., Alimuddin: Structure and electrical properties of Co0. 5CdxFe2. 5− xO4 ferrites. J. Alloy. Compd. 464, 361–369 (2008)

    Article  CAS  Google Scholar 

  38. Ye, H., Jackman, R.B., Hing, P.: Spectroscopic impedance study of nanocrystalline diamond films. J. Appl. Phys. 94, 7878–7882 (2003)

    Article  CAS  Google Scholar 

  39. Sasaki, K., Wake, K., Watanabe, S.: Development of best fit Cole-Cole parameters for measurement data from biological tissues and organs between 1 MHz and 20 GHz. Radio Sci. 49, 459–472 (2014)

    Article  Google Scholar 

  40. F.J.D. Piuma, F.G.E. Safar, D.N. Passarella, 2015 16th Workshop on Information Processing and Control, RPIC 2015 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Belal Hossen.

Ethics declarations

Conflict of interest

The authors report no conflict of interests. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, M.F., Hossen, M.B. Dynamics of complex impedance, dielectric and electric modulus for NiCuZn ferrites with theoretical justification. Int Nano Lett 12, 179–190 (2022). https://doi.org/10.1007/s40089-021-00363-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-021-00363-9

Keywords

Navigation