Skip to main content
Log in

Parabolic stochastic PDEs on bounded domains with rough initial conditions: moment and correlation bounds

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We consider nonlinear parabolic stochastic PDEs on a bounded Lipschitz domain driven by a Gaussian noise that is white in time and colored in space, with Dirichlet or Neumann boundary condition. We establish existence, uniqueness and moment bounds of the random field solution under measure-valued initial data \(\nu \). We also study the two-point correlation function of the solution and obtain explicit upper and lower bounds. For \(C^{1, \alpha }\)-domains with Dirichlet condition, the initial data \(\nu \) is not required to be a finite measure and the moment bounds can be improved under the weaker condition that the leading eigenfunction of the differential operator is integrable with respect to \(|\nu |\). As an application, we show that the solution is fully intermittent for sufficiently high level \(\lambda \) of noise under the Dirichlet condition, and for all \(\lambda > 0\) under the Neumann condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The explicit form of the fundamental solution can be found, e.g., in [36, Section 4.1.2 on p. 418].

References

  1. Amir, Gideon, Corwin, Ivan, Quastel, Jeremy: Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math. 64(4), 466–537 (2011). https://doi.org/10.1002/cpa.20347

    Article  MathSciNet  MATH  Google Scholar 

  2. Balan, Raluca M., Conus, Daniel: Intermittency for the wave and heat equations with fractional noise in time. Ann. Probab. 44(2), 1488–1534 (2016). https://doi.org/10.1214/15-AOP1005

    Article  MathSciNet  MATH  Google Scholar 

  3. Balan, Raluca M., Jolis, Maria, Quer-Sardanyons, Lluís: Intermittency for the hyperbolic Anderson model with rough noise in space. Stochastic Process. Appl. 127(7), 2316–2338 (2017). https://doi.org/10.1016/j.spa.2016.10.009

    Article  MathSciNet  MATH  Google Scholar 

  4. Candil, D.J.-M.: Localization errors of the stochastic heat equation. In: EPFL Ph.D. Thesis (2022), p. 221. https://doi.org/10.5075/epfl-thesis-7742

  5. Carmona, R.A., Molchanov, S.A.: Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108(518), 8-#x0002B;125 (1994). https://doi.org/10.1090/memo/0518

    Article  MathSciNet  MATH  Google Scholar 

  6. Cerrai, S.: Second order PDE’s in finite and infinite dimension. In: Vol. 1762. A Probabilistic Approach. Springer, Berlin (2001) pp. x+330. ISBN: 3-540-42136-X. https://doi.org/10.1007/b80743

  7. Chen, Le., Dalang, Robert C.: Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions. Ann. Probab. 43(6), 3006–3051 (2015). https://doi.org/10.1214/14-AOP954

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Le., Dalang, Robert C.: Moments, intermittency and growth indices for the nonlinear fractional stochastic heat equation. Stoch. Partial Differ. Equ. Anal. Comput. 3(3), 360–397 (2015). https://doi.org/10.1007/s40072-015-0054-x

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Le., Yaozhong, Hu., Nualart, David: Two-point correlation function and Feynman-Kac formula for the stochastic heat equation. Potential Anal. 46(4), 779–797 (2017). https://doi.org/10.1007/s11118-016-9601-y

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Le., Yaozhong, Hu., Nualart, David: Nonlinear stochastic time-fractional slow and fast diffusion equations on \(\mathbb{R}^d\). Stoch. Process. Appl. 129(12), 5073–5112 (2019). https://doi.org/10.1016/j.spa.2019.01.003

    Article  MATH  Google Scholar 

  11. Chen, L., Hu, Y., Nualart, D.: Regularity and strict positivity of densities for the nonlinear stochastic heat equation. Mem. Amer. Math. Soc. 273(1340), 5-#x0002B;102 (2021). https://doi.org/10.1090/memo/1340

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Le., Huang, Jingyu: Comparison principle for stochastic heat equation on \(\mathbb{R}^d\). Ann. Probab. 47(2), 989–1035 (2019). https://doi.org/10.1214/18-AOP1277

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Le., Kim, Kunwoo: On comparison principle and strict positivity of solutions to the nonlinear stochastic fractional heat equations. Ann. Inst. Henri Poincaré Probab. Stat. 53(1), 358–388 (2017). https://doi.org/10.1214/15-AIHP719

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Le., Kim, K.: Nonlinear stochastic heat equation driven by spatially colored noise: moments and intermittency. Acta Math. Sci. Ser. B (Engl. Ed.) 39(3), 645–668 (2019). https://doi.org/10.1007/s10473-019-0303-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Conus, Daniel, et al.: Initial measures for the stochastic heat equation. Ann. Inst. Henri Poincaré Probab. Stat. 50(1), 136–153 (2014). https://doi.org/10.1214/12-AIHP505

    Article  MathSciNet  MATH  Google Scholar 

  16. Corwin, I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices Theory Appl. 1(1), 1130001 (2012). https://doi.org/10.1142/S2010326311300014

    Article  MathSciNet  MATH  Google Scholar 

  17. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. In: Second. Vol. 152. Cambridge University Press, Cambridge (2014), pp. xviii+493. ISBN: 978-1-107-05584-1. https://doi.org/10.1017/CBO9781107295513

  18. Dalang, Robert C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous spde’s. Electron. J. Probab. 4(6), 29 (1999). https://doi.org/10.1214/EJP.v4-43

    Article  MATH  Google Scholar 

  19. Dalang, Robert C., Quer-Sardanyons, Lluís: Stochastic integrals for spde’s: a comparison. Expos. Math. 29(1), 67–109 (2011). https://doi.org/10.1016/j.exmath.2010.09.005

    Article  MathSciNet  MATH  Google Scholar 

  20. Davies, E.B.: Heat Kernels and Spectral Theory. Vol. 92. Cambridge University Press, Cambridge (1990), pp. x+197. ISBN: 0-521-40997-7

  21. Folland, G.B.: Introduction to Partial Differential Equations. Second. Princeton University Press, Princeton, NJ (1995), pp. xii+324. ISBN: 0-691-04361-2

  22. Foondun, Mohammud: Remarks on non-linear noise excitability of some stochastic heat equations. Stoch. Process. Appl. 124(10), 3429–3440 (2014). https://doi.org/10.1016/j.spa.2014.04.015

    Article  MathSciNet  MATH  Google Scholar 

  23. Foondun, Mohammud, Khoshnevisan, Davar: Intermittence and nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14(21), 548–568 (2009). https://doi.org/10.1214/EJP.v14-614

    Article  MathSciNet  MATH  Google Scholar 

  24. Foondun, Mohammud, Nualart, Eulalia: On the behaviour of stochastic heat equations on bounded domains. ALEA Lat. Am. J. Probab. Math. Stat. 12(2), 551–571 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Vol. 24. Pitman, Advanced Publishing Program, Boston, MA (1985), pp. xiv+410. ISBN: 0-273-08647-2

  26. Guerngar, Ngartelbaye, Nane, Erkan: Moment bounds of a class of stochastic heat equations driven by space-time colored noise in bounded domains. Stoch. Process. Appl. 130(10), 6246–6270 (2020). https://doi.org/10.1016/j.spa.2020.05.009

    Article  MathSciNet  MATH  Google Scholar 

  27. Henrot, A., Pierre, M.: Variation et Optimisation de Formes. Vol. 48. Une analyse géométrique. [A geometric analysis]. Springer, Berlin (2005), pp. xii+334. ISBN: 978-3-540-26211-4; 3-540-26211-3. https://doi.org/10.1007/3-540-37689-5

  28. Khoshnevisan, D.: Analysis of Stochastic Partial Differential Equations. Vol. 119. In: Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2014), pp. viii+116. ISBN: 978-1-4704-1547-1. https://doi.org/10.1090/cbms/119

  29. Khoshnevisan, Davar, Kim, Kunwoo: Non-linear noise excitation and intermittency under high disorder. Proc. Am. Math. Soc. 143(9), 4073–4083 (2015). https://doi.org/10.1090/S0002-9939-2015-12517-8

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, Wei, Tian, Kuanhou, Foondun, Mohammud: On some properties of a class of fractional stochastic heat equations. J. Theor. Probab. 30(4), 1310–1333 (2017). https://doi.org/10.1007/s10959-016-0684-6

    Article  MathSciNet  MATH  Google Scholar 

  31. Mueller, Carl: On the support of solutions to the heat equation with noise. Stoch. Stoch. Rep. 37(4), 225–245 (1991). https://doi.org/10.1080/17442509108833738

    Article  MathSciNet  MATH  Google Scholar 

  32. Mueller, Carl, Nualart, David: Regularity of the density for the stochastic heat equation. Electron. J. Probab. 13(74), 2248–2258 (2008). https://doi.org/10.1214/EJP.v13-589

    Article  MathSciNet  MATH  Google Scholar 

  33. Nualart, E.: Moment bounds for some fractional stochastic heat equations on the ball. Electron. Commun. Probab. 23, 1–12 (2018). https://doi.org/10.1214/18-ECP147

    Article  MathSciNet  MATH  Google Scholar 

  34. Olver, Frank W.J., et al.: NIST handbook of mathematical functions. With 1 CD-ROM (Windows, Macintosh and UNIX). U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge (2010), pp. xvi+951. ISBN: 978-0-521-14063- 8

  35. El Ouhabaz, M., Wang, F.-Y.: Sharp estimates for intrinsic ultracontractivity on \(C^{1,\alpha _{\text{- }}}\) domains. Manuscr. Math. 122(2), 229–244 (2007). https://doi.org/10.1007/s00229-006-0065-z

    Article  MATH  Google Scholar 

  36. Polyanin, A.D., Nazaikinskii, V.E.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Second. CRC Press, Boca Raton, FL (2016), pp. xxxiv+1609. ISBN: 978- 1-4665-8145-6. https://doi.org/10.1201/b19056

  37. Prévôt, Claudia, Röckner, Michael: A Concise Course on Stochastic Partial Differential Equations. Vol. 1905. Springer, Berlin (2007), pp. vi+144. ISBN: 978-3-540-70780-6; 3-540-70780-8

  38. Riahi, Lotfi: Estimates for Dirichlet heat kernels, intrinsic ultracontractivity and expected exit time on Lipschitz domains. Commun. Math. Anal. 15(1), 115–130 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Saloff-Coste, Laurent: A note on Poincaré, Sobolev, and Harnack inequalities. Int. Math. Res. Not. 2, 27–38 (1992). https://doi.org/10.1155/S1073792892000047

    Article  MATH  Google Scholar 

  40. Saloff-Coste, Laurent: The heat kernel and its estimates. Probab. Approach Geom. 57, 405–436 (2010). https://doi.org/10.2969/aspm/05710405

    Article  MathSciNet  MATH  Google Scholar 

  41. Shiga, Tokuzo: Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Canad. J. Math. 46(2), 415–437 (1994). https://doi.org/10.4153/CJM-1994-022-8

    Article  MathSciNet  MATH  Google Scholar 

  42. Trèves, François: Basic linear partial differential equations, p. xvii+470. Academic Press, Harcourt Brace Jovanovich, New York-London (1975)

  43. Walsh, John B.: An Introduction to Stochastic Partial Differential Equations. In: École d’été de probabilités de Saint-Flour, XIV–1984. Vol. 1180. (1986), pp. 265-439. https://doi.org/10.1007/BFb0074920

Download references

Acknowledgements

C. Y. Lee is partially supported by Taiwan’s National Science and Technology Council grant NSTC111-2115-M-007-015-MY2. L. Chen is partially supported by NSF DMS-2246850 and a collaboration grant from Simons Foundation (959981). The authors would also like to thank the anonymous referee for the careful reading and helpful suggestions, which have greatly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheuk Yin Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candil, D., Chen, L. & Lee, C.Y. Parabolic stochastic PDEs on bounded domains with rough initial conditions: moment and correlation bounds. Stoch PDE: Anal Comp (2023). https://doi.org/10.1007/s40072-023-00310-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40072-023-00310-z

Keywords

Mathematics Subject Classification

Navigation