Skip to main content
Log in

Central limit theorems for nonlinear stochastic wave equations in dimension three

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

In this paper, we consider three-dimensional nonlinear stochastic wave equations driven by the Gaussian noise which is white in time and has some spatial correlations. Using the Malliavin–Stein’s method, we prove the Gaussian fluctuation for the spatial average of the solution under the Wasserstein distance in the cases where the spatial correlation is given by an integrable function and by the Riesz kernel. In both cases we also establish functional central limit theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Assaad, O., Nualart, D., Tudor, C.A., Viitasaari, L.: Quantitative normal approximations for the stochastic fractional heat equation. Stoch. Partial Differ. Equ. Anal. Comput. 10(1), 223–254 (2021)

    MathSciNet  Google Scholar 

  2. Balan, R.M., Nualart, D., Quer-Sardanyons, L., Zheng, G.: The hyperbolic Anderson model: moment estimates of the Malliavin derivatives and applications. Stoch. Partial Differ. Equ. Anal. Comput. 10(3), 757–827 (2022)

    MathSciNet  Google Scholar 

  3. Balan, R.M., Quer-Sardanyons, L., Song, J.: Existence of density for the stochastic wave equation with space-time homogeneous Gaussian noise. Electron. J. Probab. 24(106), 43 (2019)

    MathSciNet  Google Scholar 

  4. Bogachev, V.I.: Measure theory. II, vol. I. Springer-Verlag, Berlin (2007)

    Book  Google Scholar 

  5. Chen, L., Khoshnevisan, D., Nualart, D., Pu, F.: Central limit theorems for spatial averages of the stochastic heat equation via Malliavin–Stein’s method. Stoch. Partial Differ. Equ. Anal. Comput. 1–55 (2021)

  6. Chen, L., Khoshnevisan, D., Nualart, D., Fei, P.: Spatial ergodicity for SPDEs via Poincaré-type inequalities. Electron. J. Probab. 26, 1–37 (2021)

    Article  Google Scholar 

  7. Chen, L., Khoshnevisan, D., Nualart, D., Fei, P.: Central limit theorems for parabolic stochastic partial differential equations. Ann. Inst. Henri Poincaré Probab. Stat. 58(2), 1052–1077 (2022)

    Article  MathSciNet  Google Scholar 

  8. Chen, L., Khoshnevisan, D., Nualart, D., Fei, P.: Spatial ergodicity and central limit theorems for parabolic anderson model with delta initial condition. J. Funct. Anal. 282(2), 109290 (2022)

    Article  MathSciNet  Google Scholar 

  9. Dalang, R.C.: Corrections to: extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s. Electron. J. Probab. 6 (1999)

  10. Dalang, R.: C: Extending the Martingale Measure Stochastic Integral With Applications to Spatially Homogeneous S.P.D.E.’s. Electron. J. Probab. 4, 1–29 (1999)

    Article  MathSciNet  Google Scholar 

  11. Dalang, R.C., Quer-Sardanyons, L.: Stochastic integrals for spde’s: a comparison. Expo. Math. 29(1), 67–109 (2011)

    Article  MathSciNet  Google Scholar 

  12. Delgado-Vences, F., Nualart, D., Zheng, G.: A Central Limit Theorem for the stochastic wave equation with fractional noise. Ann. Inst. Henri Poincaré Probab. Stat. 56(4), 3020–3042 (2020)

    Article  MathSciNet  Google Scholar 

  13. Driver, B.K: Analysis tools with applications. (2003) http://www.math.ucsd.edu/bdriver/231-02-03/Lecture_Notes/PDE-Anal-Book/analpde1.pdf

  14. Guerrero, R.B., Nualart, D., Zheng, G.: Averaging 2d stochastic wave equation. Electron. J. Probab. 26, 1–32 (2021)

    MathSciNet  Google Scholar 

  15. Hu, Y., Huang, J., Nualart, D.: On Holder continuity of the solution of stochastic wave equations in dimension three. Stoch. Partial Differ. Equ. Anal. Comput. 2, 353–407 (2014)

    MathSciNet  Google Scholar 

  16. Huang, J., Nualart, D., Viitasaari, L.: A central limit theorem for the stochastic heat equation. Stoch. Process. Appl. 130(12), 7170–7184 (2020)

    Article  MathSciNet  Google Scholar 

  17. Huang, J., Nualart, D., Viitasaari, L., Zheng, G.: Gaussian fluctuations for the stochastic heat equation with colored noise. Stoch. Partial Differ. Equ. Anal. Comput. 8(2), 402–421 (2020)

    MathSciNet  Google Scholar 

  18. Hytönen, T., Neerven, J.V., Mark, V., Weis, L.: Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory, volume 63 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham (2016)

  19. Kallenberg, O.: Foundations of Modern Probability. Probability Theory and Stochastic Modelling, vol. 99, 3rd edn. Springer, Cham (2021)

    Book  Google Scholar 

  20. Khoshnevisan, D.: Analysis of stochastic partial differential equations, volume 119 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (2014)

  21. Khoshnevisan, D., Nualart, D., Fei, P.: Spatial stationarity, ergodicity, and clt for parabolic anderson model with delta initial condition in dimension \(d\ge 1\). SIAM J. Math. Anal. 53(2), 2084–2133 (2021)

    Article  MathSciNet  Google Scholar 

  22. Kim, K., Yi, J.: Limit theorems for time-dependent averages of nonlinear stochastic heat equations. Bernoulli 28(1), 214–238 (2022)

    Article  MathSciNet  Google Scholar 

  23. Millet, A., Sanz-Sole, M.: A stochastic wave equation in two space dimension: Smoothness of the law. Ann. Probab. 27(2), 803–844 (1999)

    Article  MathSciNet  Google Scholar 

  24. Mizohata, Sigeru: The theory of partial differential equations. Cambridge University Press, New York (1973). (Translated from the Japanese by Katsumi Miyahara)

    Google Scholar 

  25. Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  26. Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  27. Nualart, D., Nualart, E.: Introduction to Malliavin Calculus. Institute of Mathematical Statistics Textbooks, Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  28. Nualart, D., Song, X., Zheng, G.: Spatial averages for the parabolic anderson model driven by rough noise. Latin American Journal of Probability and Mathematical Statistics 18, 907–943 (2021)

    Article  MathSciNet  Google Scholar 

  29. Nualart, D., Xia, P., Zheng, G.: Quantitative central limit theorems for the parabolic Anderson model driven by colored noises. Electron. J. Probab. 27(120), 43 (2022)

    MathSciNet  Google Scholar 

  30. Nualart, D., Zheng, G.: Averaging Gaussian functionals. Electron. J. Probab. 25, 1–54 (2020)

    Article  MathSciNet  Google Scholar 

  31. Nualart, D., Zheng, G.: Spatial ergodicity of stochastic wave equations in dimensions 1, 2 and 3. Electron. Commun. Probab. 25, 1–11 (2020)

    Article  MathSciNet  Google Scholar 

  32. Nualart, D., Zheng, G.: Central limit theorems for stochastic wave equations in dimensions one and two. Stoch. Partial Differ. Equ. Anal. Comput. 10(2), 392–418 (2022)

    MathSciNet  Google Scholar 

  33. Pu, F.: Gaussian fluctuation for spatial average of parabolic Anderson model with Neumann/Dirichlet/periodic boundary conditions. Transactions of the American Mathematical Society (2021)

  34. Schwartz, L.: Théorie des distributions. Publications de l’Institut de Mathématique de l’Université de Strasbourg, IX-X. Hermann, Paris, (1966). Nouvelle édition, entiérement corrigée, refondue et augmentée

  35. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, NJ (1970)

  36. Stein, E.M., Shakarchi, R.: Fourier Analysis: An Introduction. Princeton Lectures in Analysis, vol. 1. Princeton University Press, Princeton, NJ (2003)

    Google Scholar 

  37. Walsh, J.B.: An introduction to stochastic partial differential equations. In: Hennequin, P.L. (ed.) École d’Été de Probabilités de Saint Flour XIV - 1984, pp. 265–439. Springer, Berlin Heidelberg (1986)

    Chapter  Google Scholar 

Download references

Acknowledgements

The author would like to express his deep gratitude to Professor Seiichiro Kusuoka for his helpful advice and encouragement. This work was supported by JSPS KAKENHI Grant Number JP22J21604.

Funding

This work was supported by Japan Society for the Promotion of Science (JSPS), KAKENHI Grant No. JP22J21604.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahisa Ebina.

Ethics declarations

Conflict of interest

The author declares that he has no relevant competing financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section we gather some technical estimates needed for our proof. Recall that \(\langle x \rangle = \sqrt{1 + |x|^2}\).

We first record the useful inequality known as Peetre’s inequality. See [13, Lemma 34.34, p. 738] for the proof.

Lemma A.1

(Peetre’s inequality) For any \(k \in {\mathbb {R}}\) and \(x,y \in {\mathbb {R}}^3\), we have

$$\begin{aligned} \langle x + y \rangle ^k \leqslant 2^{\frac{|k|}{2}}\langle x \rangle ^k\langle y \rangle ^{|k|}. \end{aligned}$$

The following two lemmas are easy to check and we state without the proof.

Lemma A.2

Let \(\alpha \in {\mathbb {R}}\) and \(R \geqslant 2\). Then, we have

$$\begin{aligned} \int _{B_R}\langle x \rangle ^{\alpha } dx&\lesssim {\left\{ \begin{array}{ll} R^{3+\alpha } &{}(\alpha> -3)\\ \log R &{}(\alpha = -3)\\ 1 &{}(\alpha< -3) \end{array}\right. },\\ \int _{{B^2_R}}\langle x-y \rangle ^{\alpha }dxdy&\lesssim {\left\{ \begin{array}{ll} R^{6+\alpha } &{}(\alpha> -3)\\ R^3\log R &{}(\alpha = -3)\\ R^3 &{}(\alpha< -3) \end{array}\right. },\\ \int _{{B^3_R}}\langle x-y \rangle ^{\alpha }\langle y-z \rangle ^{\alpha }dxdydz&\lesssim {\left\{ \begin{array}{ll} R^{9+2\alpha } &{}(\alpha > -3)\\ R^3(\log R)^2 &{}(\alpha = -3)\\ R^3 &{}(\alpha < -3) \end{array}\right. }. \end{aligned}$$

Lemma A.3

For any \(\alpha \in {\mathbb {R}}\), we have

$$\begin{aligned} \sup _{t \in [0,T]}\int _{{\mathbb {R}}^3}\langle x \rangle ^{\alpha }G(t,dx)< \infty ,\\ \sup _n\sup _{t \in [0,T]}\int _{{\mathbb {R}}^3}\langle x \rangle ^{\alpha }G_n(t,dx) < \infty . \end{aligned}$$

Using Lemmas A.2 and A.3, we can prove the following estimate which is needed for the proof of Lemma 4.4.

Lemma A.4

Let \(f,g \in L^1({\mathbb {R}}^3)\) be nonnegative functions, \(\alpha >0\), and \(R\geqslant 2\). Suppose that nonnegative functions \(\gamma \) and F satisfy

$$\begin{aligned} F(x) \lesssim \theta _1 f(x) + \theta _2 \langle x \rangle ^{-\alpha }, \end{aligned}$$
(A.1)
$$\begin{aligned} \gamma (x) \lesssim \theta _3 g(x) + \theta _4 \langle x \rangle ^{-\alpha }, \end{aligned}$$
(A.2)

where \(\theta _i\) is a constant such that \(\theta _i \in \{0,1\}\) for all \(1 \leqslant i \leqslant 4\). Then, for any \(0 \leqslant s \leqslant r \leqslant T\), we have

$$\begin{aligned}&\int _{{\mathbb {R}}^{12}}dydy'dzdz' \varphi _{n,t_1,R}(r,y)\varphi _{n,t_2,R}(s,z)\nonumber \\&\times \gamma (y-z) \varphi _{n,t_1,R}(r,y')\varphi _{n,t_2,R}(s,z')\gamma (y'-z')F(z-z') \nonumber \\&\lesssim {\left\{ \begin{array}{ll} \theta _1\theta _3R^3 + \theta _3(\theta _1\theta _4 + \theta _2)R^{6-\alpha } + \theta _4(\theta _1+\theta _2\theta _3)R^{9-2\alpha } \\ + \theta _2\theta _4R^{12-3\alpha } &{}(0< \alpha < 3)\\ \theta _1\theta _3R^3 + \theta _3(\theta _1\theta _4 + \theta _2)R^3(\log R)+ \theta _4(\theta _1\\ +\theta _2\theta _3)R^3(\log R)^2 + \theta _2\theta _4 R^3(\log R)^3 &{}(\alpha = 3)\\ (\theta _1 + \theta _2)(\theta _3 + \theta _3\theta _4 + \theta _4)R^3 &{}(\alpha > 3) \end{array}\right. }. \end{aligned}$$
(A.3)

Proof

By (A.1), we have

$$\begin{aligned}&\int _{{\mathbb {R}}^{12}}dydy'dzdz' \varphi _{n,t_1,R}(r,y)\varphi _{n,t_2,R}(s,z)\\&\quad \times \gamma (y-z) \varphi _{n,t_1,R}(r,y')\varphi _{n,t_2,R}(s,z')\gamma (y'-z')F(z-z')\\&\lesssim \theta _1\int _{{\mathbb {R}}^{12}}dydy'dzdz'\int _{{B^4_R}}dxdx'dwdw'\\&\quad \times G_n(t_1-r,x-y)G_n(t_2-s,x'-z)\gamma (y-z)\\&\quad \times G_n(t_1-r,w-y')G_n(t_2-s,w'-z')\gamma (y'-z')f(z-z')\\&\quad + \theta _2\int _{{\mathbb {R}}^{12}}dydy'dzdz'\int _{{B^4_R}}dxdx'dwdw'\\&\quad \times G_n(t_1-r,x-y)G_n(t_2-s,x'-z)\gamma (y-z)\\&\quad \times G_n(t_1-r,w-y')G_n(t_2-s,w'-z')\gamma (y'-z')\langle z-z' \rangle ^{-\alpha }\\&{=}{:}\,\theta _1\mathbf {A_1} + \theta _2\mathbf {A_2}. \end{aligned}$$

For the term \(\mathbf {A_1}\), we have from (A.2) that

$$\begin{aligned} \mathbf {A_1}&\lesssim \theta _3^2\int _{{\mathbb {R}}^{12}}dydy'dzdz'\int _{{B^4_R}}dxdx'dwdw'G_n(t_1{-}r,x{-}y)G_n(t_2{-}s,x'{-}z)g(y{-}z)\\&\quad \times G_n(t_1-r,w-y')G_n(t_2-s,w'-z')g(y'-z')f(z-z')\\&\quad + \theta _3\theta _4\int _{{\mathbb {R}}^{12}}dydy'dzdz'\int _{{B^4_R}}dxdx'dwdw'G_n(t_1{-}r,x{-}y)G_n(t_2{-}s,x'{-}z)g(y{-}z)\\&\quad \times G_n(t_1-r,w-y')G_n(t_2-s,w'-z')\langle y'-z' \rangle ^{-\alpha }f(z-z')\\&\quad {+}\theta _3\theta _4\int _{{\mathbb {R}}^{12}}dydy'dzdz'\int _{{B^4_R}}dxdx'dwdw'G_n(t_1{-}r,x{-}y)G_n(t_2{-}s,x'{-}z)\langle y-z \rangle ^{-\alpha }\\&\quad \times G_n(t_1-r,w-y')G_n(t_2-s,w'-z')g(y'-z')f(z-z')\\&\quad {+}\theta _4^2\int _{{\mathbb {R}}^{12}}dydy'dzdz'\int _{{B^4_R}}dxdx'dwdw'G_n(t_1{-}r,x{-}y)G_n(t_2{-}s,x'-z)\langle y-z \rangle ^{-\alpha }\\&\quad \times G_n(t_1-r,w-y')G_n(t_2-s,w'-z')\langle y'-z' \rangle ^{-\alpha }f(z-z')\\&{=}{:}\, \theta _3^2\mathbf {A_{11}}+\theta _3\theta _4\mathbf {A_{12}}+\theta _3\theta _4\mathbf {A_{13}}{+}\theta _4^2\mathbf {A_{14}}. \end{aligned}$$

Similarly, for the term \(\mathbf {A_2}\), we have from (A.2) that

$$\begin{aligned} \mathbf {A_2}&\lesssim \theta _3^2\int _{{\mathbb {R}}^{12}}dydy'dzdz'\int _{{B^4_R}}dxdx'dwdw'G_n(t_1-r,x-y)G_n(t_2-s,x'-z)g(y-z)\\&\quad \times G_n(t_1-r,w-y')G_n(t_2-s,w'-z')g(y'-z')\langle z-z' \rangle ^{-\alpha }\\&\quad +\theta _3\theta _4\int _{{\mathbb {R}}^{12}}dydy'dzdz'\int _{{B^4_R}}dxdx'dwdw'G_n(t_1-r,x-y)G_n(t_2-s,x'-z)g(y-z)\\&\quad \times G_n(t_1-r,w-y')G_n(t_2-s,w'-z')\langle y'-z' \rangle ^{-\alpha }\langle z-z' \rangle ^{-\alpha }\\&\quad +\theta _3\theta _4\int _{{\mathbb {R}}^{12}}dydy'dzdz'\int _{{B^4_R}}dxdx'dwdw'G_n(t_1-r,x-y)G_n(t_2-s,x'-z)\langle y-z \rangle ^{-\alpha }\\&\quad \times G_n(t_1-r,w-y')G_n(t_2-s,w'-z')g(y'-z')\langle z-z' \rangle ^{-\alpha }\\&\quad +\theta _4^2\int _{{\mathbb {R}}^{12}}dydy'dzdz'\int _{{B^4_R}}dxdx'dwdw'G_n(t_1-r,x-y)G_n(t_2-s,x'-z)\langle y-z \rangle ^{-\alpha }\\&\quad \times G_n(t_1-r,w-y')G_n(t_2-s,w'-z')\langle y'-z' \rangle ^{-\alpha }\langle z-z' \rangle ^{-\alpha }\\&{=}{:}\, \theta _3^2\mathbf {A_{21}}+\theta _3\theta _4\mathbf {A_{22}}+\theta _3\theta _4\mathbf {A_{23}}+\theta _4^2\mathbf {A_{24}}. \end{aligned}$$

First we consider \(\mathbf {A_{11}}\). Integrating in the order \(dw, dw', dy', dz', dx, dy,dz,dx'\), we get

$$\begin{aligned} \mathbf {A_{11}}&\lesssim _T \int _{{\mathbb {R}}^{12}}dydy'dzdz'\int _{{B^2_R}}dxdx'G_n(t_1-r,x-y)G_n(t_2-s,x'-z)g(y-z)\\&\qquad \times g(y'-z')f(z-z')\\&\lesssim \Vert g\Vert _{L^1({\mathbb {R}}^3)}\Vert f\Vert _{L^1(\mathbb R)^3}\int _{{\mathbb {R}}^{6}}dydz\int _{{B^2_R}}dxdx'\\&\qquad \times G_n(t_1-r,x-y)G_n(t_2-s,x'-z)g(y-z)\lesssim _T R^3. \end{aligned}$$

Next we estimate \(\mathbf {A_{12}}\). Integrating in the order \(dx,dx',dy,dz\), we obtain

$$\begin{aligned} \mathbf {A_{12}}&\lesssim _T \Vert g\Vert _{L^1({\mathbb {R}}^3)}\Vert f\Vert _{L^1(\mathbb R)^3}\int _{{\mathbb {R}}^{6}}dy'dz'\int _{{B^2_R}}dwdw'\\&\times G_n(t_1-r,w-y')G_n(t_2-s,w'-z')\langle y'-z' \rangle ^{-\alpha }. \end{aligned}$$

Furthermore, Using Peetre’s inequality and integrating with respect to \(dy', dz'\), we get

$$\begin{aligned} \mathbf {A_{12}}&\lesssim \int _{{\mathbb {R}}^{6}}dy'dz'\int _{{B^2_R}}dwdw'G_n(t_1-r,w-y')\langle w-y' \rangle ^{\alpha }\\&\qquad \qquad \qquad \quad \times G_n(t_2-s,w'-z')\langle w'-z' \rangle ^{\alpha }\langle w-w' \rangle ^{-\alpha }\\&\lesssim _T \int _{{B^2_R}}dwdw'\langle w-w' \rangle ^{-\alpha }\\&\lesssim {\left\{ \begin{array}{ll} R^{6-\alpha } &{}(0<\alpha < 3)\\ R^3\log R &{}(\alpha = 3)\\ R^3 &{}(\alpha > 3 ) \end{array}\right. }. \end{aligned}$$

\(\mathbf {A_{13}}\) can be estimated in the same way as \(\mathbf {A_{12}}\). Now we consider the term \(\mathbf {A_{14}}\). Applying Peetre’s inequality and integrating with respect to \(dy,dy'\) lead to

$$\begin{aligned} \mathbf {A_{14}}&\lesssim \int _{{\mathbb {R}}^{12}}dydy'dzdz'\int _{{B^4_R}}dxdx'dwdw'\\&\quad \qquad \times G_n(t_1-r,x-y)\langle x-y \rangle ^{\alpha }G_n(t_2-s,x'-z)\langle x'-z \rangle ^{\alpha }\\&\quad \qquad \times G_n(t_1-r,w-y')\langle w-y' \rangle ^{\alpha }G_n(t_2-s,w'-z')\langle w'-z' \rangle ^{\alpha }\\&\quad \qquad \times \langle x-x' \rangle ^{-\alpha }\langle w-w' \rangle ^{-\alpha }f(z-z')\\&\lesssim _T \int _{{\mathbb {R}}^{6}}dzdz'\int _{{B^4_R}}dxdx'dwdw'\\&\quad \qquad \times G_n(t_2-s,x'-z)\langle x'-z \rangle ^{\alpha }G_n(t_2-s,w'-z')\langle w'-z' \rangle ^{\alpha }\\&\quad \qquad \times \langle x-x' \rangle ^{-\alpha }\langle w-w' \rangle ^{-\alpha }f(z-z')\\&= \int _{{\mathbb {R}}^{6}}dzdz'\int _{{B^2_R}}dwdw'G_n(t_2-s,w'-z')\langle w'-z' \rangle ^{\alpha }\langle w-w' \rangle ^{-\alpha }f(z-z')\\&\quad \qquad \times \left\{ \int _{B_R}G_n(t_2-s,x'-z)\langle x'-z \rangle ^{\alpha }\left( \int _{B_R(-x')}\langle x \rangle ^{-\alpha }dx \right) dx' \right\} \\&\leqslant \int _{{\mathbb {R}}^{6}}dzdz'\int _{{B^2_R}}dwdw'G_n(t_2-s,w'-z')\langle w'-z' \rangle ^{\alpha }\langle w-w' \rangle ^{-\alpha }f(z-z')\\&\quad \qquad \times \left( \int _{B_R}G_n(t_2-s,x'-z)\langle x'-z \rangle ^{\alpha }dx' \right) \left( \int _{B_{2R}}\langle x \rangle ^{-\alpha }dx \right) . \end{aligned}$$

Therefore, integrating in the order \(dx',dz,dz'\), we have

$$\begin{aligned} \mathbf {A_{14}}&\lesssim _T \Vert f\Vert _{L^1({\mathbb {R}})}\int _{B_{2R}}\langle x \rangle ^{-\alpha }dx\int _{{B^2_R}} \langle w-w' \rangle ^{-\alpha }dwdw'\\&\lesssim {\left\{ \begin{array}{ll} R^{9-2\alpha } &{}(0<\alpha < 3)\\ R^3(\log R)^2 &{}(\alpha = 3)\\ R^3 &{}(\alpha > 3 ) \end{array}\right. }. \end{aligned}$$

Next we estimate \(\mathbf {A_{21}}\). Integrating in the order \(dx,dw,dy,dy'\), we get

$$\begin{aligned} \mathbf {A_{21}}&\lesssim _T \Vert g\Vert _{L^1({\mathbb {R}}^3)}^2 \int _{{\mathbb {R}}^{6}}dzdz'\int _{{B^2_R}}dx'dw'\\&\times G_n(t_2-s,x'-z) G_n(t_2-s,w'-z')\langle z-z' \rangle ^{-\alpha }. \end{aligned}$$

Thus, using Peetre’s inequality and integrating with respect to \(dz, dz'\), we obtain

$$\begin{aligned} \mathbf {A_{21}}&\lesssim \int _{{\mathbb {R}}^{6}}dzdz'\int _{{B^2_R}}dx'dw'\langle x'-w' \rangle ^{-\alpha }\\&\qquad \times G_n(t_2-s,x'-z)\langle x'-z \rangle ^{\alpha } G_n(t_2-s,w'-z')\langle w'-z' \rangle ^{\alpha }\\&\lesssim _T \int _{{B^2_R}}dx'dw'\langle x'-w' \rangle ^{-\alpha }\\&\lesssim {\left\{ \begin{array}{ll} R^{6-\alpha } &{}(0<\alpha < 3)\\ R^3\log R &{}(\alpha = 3)\\ R^3 &{}(\alpha > 3 ) \end{array}\right. }. \end{aligned}$$

Next we consider \(\mathbf {A_{22}}\). Integrating in the order dxdy, we have

$$\begin{aligned} \mathbf {A_{22}}&\lesssim _T \Vert g\Vert _{L^1({\mathbb {R}}^3)} \int _{{\mathbb {R}}^{9}}dy'dzdz'\int _{{B^3_R}}dx'dwdw'\langle y'-z' \rangle ^{-\alpha }\langle z-z' \rangle ^{-\alpha }\\&\quad \qquad \qquad \quad \times G_n(t_2-s,x'-z)G_n(t_1-r,w-y')G_n(t_2-s,w'-z'). \end{aligned}$$

Then, applying Peetre’s inequality repeatedly and integrating with respect to \(dz,dy',dz'\), we get

$$\begin{aligned} \mathbf {A_{22}}&\lesssim \int _{{\mathbb {R}}^{9}}dy'dzdz'\int _{{B^3_R}}dx'dwdw'\langle w-w' \rangle ^{-\alpha }\langle x'-w' \rangle ^{-\alpha }\\&\qquad \times G_n(t_2-s,x'-z)\langle x'-z \rangle ^{\alpha }G_n(t_1-r,w-y')\langle w-y' \rangle ^{\alpha }\\&\qquad \times G_n(t_2-s,w'-z')\langle w'-z' \rangle ^{2\alpha }\\&\lesssim _T \int _{{B^3_R}}dx'dwdw'\langle w-w' \rangle ^{-\alpha }\langle x'-w' \rangle ^{-\alpha }\\&\lesssim {\left\{ \begin{array}{ll} R^{9-2\alpha } &{}(0<\alpha < 3)\\ R^3(\log R)^2 &{}(\alpha = 3)\\ R^3 &{}(\alpha > 3 ) \end{array}\right. }. \end{aligned}$$

\(\mathbf {A_{23}}\) can be estimated as well as \(\mathbf {A_{22}}\). Finally, we estimate the term \(\mathbf {A_{24}}\). Using Peetre’s inequality iteratively and integrating with respect to \(dy,dz,dy',dz'\), we obtain

$$\begin{aligned} \mathbf {A_{24}}&\lesssim \int _{{\mathbb {R}}^{12}}dydy'dzdz'\int _{{B^4_R}}dxdx'dwdw'\langle x-x' \rangle ^{-\alpha }\langle x'-w' \rangle ^{-\alpha }\langle w'-w \rangle ^{-\alpha }\\&\quad \qquad \times G_n(t_1-r,x-y)\langle x-y \rangle ^{\alpha }G_n(t_2-s,x'-z)\langle x'-z \rangle ^{2\alpha }\\&\quad \qquad \times G_n(t_1-r,w-y')\langle w-y' \rangle ^{\alpha }G_n(t_2-s,w'-z')\langle w'-z' \rangle ^{2\alpha }\\&\lesssim _T \int _{{B^4_R}}dxdx'dwdw'\langle x-x' \rangle ^{-\alpha }\langle x'-w' \rangle ^{-\alpha }\langle w'-w \rangle ^{-\alpha }\\&\leqslant \int _{B_{2R}}\langle x \rangle ^{-\alpha }dx\int _{{B^3_R}}dx'dwdw'\langle x'-w' \rangle ^{-\alpha }\langle w'-w \rangle ^{-\alpha }\\&\lesssim {\left\{ \begin{array}{ll} R^{12-3\alpha } &{}(0<\alpha < 3)\\ R^3(\log R)^3 &{}(\alpha = 3)\\ R^3 &{}(\alpha > 3 ) \end{array}\right. }. \end{aligned}$$

As a consequence, combining altogether we have (A.3). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebina, M. Central limit theorems for nonlinear stochastic wave equations in dimension three. Stoch PDE: Anal Comp 12, 1141–1200 (2024). https://doi.org/10.1007/s40072-023-00302-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-023-00302-z

Keywords

Mathematics Subject Classification

Navigation