Skip to main content
Log in

Existence and uniqueness for the mild solution of the stochastic heat equation with non-Lipschitz drift on an unbounded spatial domain

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We prove the existence and uniqueness of the mild solution for a nonlinear stochastic heat equation defined on an unbounded spatial domain. The nonlinearity is not assumed to be globally, or even locally, Lipschitz continuous. Instead the nonlinearity is assumed to satisfy a one-sided Lipschitz condition. First, a strengthened version of the Kolmogorov continuity theorem is introduced to prove that the stochastic convolutions of the fundamental solution of the heat equation and a spatially homogeneous noise grow no faster than polynomially. Second, a deterministic mapping that maps the stochastic convolution to the solution of the stochastic heat equation is proven to be Lipschitz continuous on polynomially weighted spaces of continuous functions. These two ingredients enable the formulation of a Picard iteration scheme to prove the existence and uniqueness of the mild solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bianchi, L.A., Blömker, D., Schneider, G.: Modulation equation and SPDEs on unbounded domains (2017). arXiv:1706.02558

  2. Blömker, D., Han, Y.: Asymptotic compactness of stochastic complex Ginzburg–Landau equation on an unbounded domain. Stoch. Dyn. 10(4), 613–636 (2010)

    Article  MathSciNet  Google Scholar 

  3. Cerrai, S.: Stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term. Probab. Theory Relat. Fields 125(2), 271–304 (2003)

    Article  MathSciNet  Google Scholar 

  4. Chow, P.-L.: Stochastic wave equations with polynomial nonlinearity. Ann. Appl. Probab. 12(1), 361–381 (2002)

    Article  MathSciNet  Google Scholar 

  5. Conway, J.B.: A Course in Functional Analysis. Graduate Texts in Mathematics, vol. 96, 2nd edn. Springer, New York (1990)

    MATH  Google Scholar 

  6. Da Prato, G., Debussche, A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 31(4), 1900–1916 (2003)

    Article  MathSciNet  Google Scholar 

  7. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its ApplicationsEncyclopedia of Mathematics and Its ApplicationsEncyclopedia of Mathematics and its Applications, vol. 152, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  8. Dalang, R., Khoshnevisan, D., Mueller, C., Nualart, D., Xiao, Y.: A Minicourse on Stochastic Partial Differential Equations, Lecture Notes in Mathematics vol. 1962, Springer, Berlin (2009), Held at the University of Utah, Salt Lake City, UT, May 8–19, 2006, Edited by Khoshnevisan and Firas Rassoul-Agha

  9. Dalang, R.C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E.’s. Electron. J. Probab. 4(6), 29 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Dalang, R.C., Khoshnevisan, D., Zhang, T.: Global solutions to stochastic reaction-diffusion equations with super-linear drift and multiplicative noise. Ann. Probab. 47(1), 519–559 (2019)

    Article  MathSciNet  Google Scholar 

  11. DI Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  12. Eckmann, J.-P., Hairer, M.: Invariant measures for stochastic partial differential equations in unbounded domains. Nonlinearity 14(1), 133–151 (2001)

    Article  MathSciNet  Google Scholar 

  13. Funaki, T.: The scaling limit for a stochastic PDE and the separation of phases. Probab. Theory Relat. Fields 102(2), 221–288 (1995)

    Article  MathSciNet  Google Scholar 

  14. Gordina, M., Röckner, M., Teplyaev, A.: Singular perturbations of Ornstein–Uhlenbeck processes: integral estimates and Girsanov densities (2018). arXiv:1801.00761

  15. Gyöngy, I., Rovira, C.: On \(L^p\)-solutions of semilinear stochastic partial differential equations. Stoch. Process. Appl. 90(1), 83–108 (2000)

    Article  Google Scholar 

  16. Hairer, M., Labbé, C.: A simple construction of the continuum parabolic Anderson model on \({ R}^2\). Electron. Commun. Probab. 20(43), 11 (2015)

    MATH  Google Scholar 

  17. Iwata, K.: An infinite-dimensional stochastic differential equation with state space \(C({ R})\). Probab. Theory Relat. Fields 74(1), 141–159 (1987)

    Article  MathSciNet  Google Scholar 

  18. Jona-Lasinio, G., Mitter, P.K.: On the stochastic quantization of field theory. Commun. Math. Phys. 101(3), 409–436 (1985)

    Article  MathSciNet  Google Scholar 

  19. Marinelli, C.: Well-posedness for a class of dissipative stochastic evolution equations with Wiener and Poisson noise, pp. 187–196. Random Fields and Applications VII, Seminar on Stochastic Analysis (2013)

  20. Marinelli, C., Nualart, E., Quer-Sardanyons, L.: Existence and regularity of the density for solutions to semilinear dissipative parabolic SPDEs. Potential Anal. 39(3), 287–311 (2013)

    Article  MathSciNet  Google Scholar 

  21. Marinelli, C., Röckner, M.: On uniqueness of mild solutions for dissipative stochastic evolution equations. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13(3), 363–376 (2010)

    Article  MathSciNet  Google Scholar 

  22. Mourrat, J.-C., Weber, H.: Global well-posedness of the dynamic \(\Phi ^4\) model in the plane. Ann. Probab. 45(4), 2398–2476 (2017)

    Article  MathSciNet  Google Scholar 

  23. Mueller, C., Mytnik, L., Perkins, E.: Nonuniqueness for a parabolic SPDE with \(\frac{3}{4}-\epsilon \)-Hölder diffusion coefficients. Ann. Probab. 42(5), 2032–2112 (2014)

    Article  MathSciNet  Google Scholar 

  24. Mytnik, L., Perkins, E.: Pathwise uniqueness for stochastic heat equations with Hölder continuous coefficients: the white noise case. Probab. Theory Relat. Fields 149(1–2), 1–96 (2011)

    Article  Google Scholar 

  25. Mytnik, L., Perkins, E., Sturm, A.: On pathwise uniqueness for stochastic heat equations with non-Lipschitz coefficients. Ann. Probab. 34(5), 1910–1959 (2006)

    Article  MathSciNet  Google Scholar 

  26. Parisi, G., Wu, Y.S.: Perturbation theory without gauge fixing. Sci. Sin. 24(4), 483–496 (1981)

    MathSciNet  Google Scholar 

  27. Sanz-Solé, M., Sarrà, M.: Hölder continuity for the stochastic heat equation with spatially correlated noise. In: Seminar on Stochastic Analysis, Random Fields and Applications, III (Ascona, 1999) (2002), pp. 259–268

  28. Walsh, J.B.: An introduction to stochastic partial differential equations. École d’été de probabilités de Saint-Flour, XIV—1984 (1986), pp. 265–439

Download references

Acknowledgements

The author thanks Le Chen for several interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salins.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salins, M. Existence and uniqueness for the mild solution of the stochastic heat equation with non-Lipschitz drift on an unbounded spatial domain. Stoch PDE: Anal Comp 9, 714–745 (2021). https://doi.org/10.1007/s40072-020-00182-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-020-00182-7

Keywords

Navigation