Skip to main content
Log in

Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion

  • Published:
Stochastic Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

This article is devoted to the numerical study of a nonlinear Schrödinger equation in which the coefficient in front of the group velocity dispersion is multiplied by a real valued Gaussian white noise. We first perform the numerical analysis of a semi-discrete Crank–Nicolson scheme in the case when the continuous equation possesses a unique global solution. We prove that the strong order of convergence in probability is equal to one in this case. In a second step, we numerically investigate, in space dimension one, the behavior of the solutions of the equation for different power nonlinearities, corresponding to subcritical, critical or supercritical nonlinearities in the deterministic case. Numerical evidence of a change in the critical power due to the presence of the noise is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, San Diego (2001)

    Google Scholar 

  2. Agrawal, G.P.: Applications of Nonlinear Fiber Optics. Academic Press, San Diego (2001)

    Google Scholar 

  3. Barton-Smith, M., Debussche, A., DiMenza, L.: Numerical study of two dimensional stochastic NLS equations. Numer. Methods PDEs 21, 810–842 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Besse, C.: Schéma de relaxation pour l’équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C.R. Acad. Sci. Paris. Sér. I Math. 326, 1427–1432 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Besse, C., Bidgaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40(1), 26–40 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cazenave, T.: Semilinear Schrödinger equations. American Mathematical Society, Courant Institute of Mathematical Sciences, Courant Lecture Notes in Mathematics (2003)

  7. de Bouard, A., Debussche, A.: A semi-discrete scheme for the stochastic nonlinear Schrödinger equation. Numer. Math. 96(4), 733–770 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. de Bouard, A., Debussche, A.: Blow-up for the supercritical stochastic nonlinear Schrödinger equation with multiplicative noise. Ann. Probab. 33(3), 1078–1110 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. de Bouard, A., Debussche, A.: Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrödinger equation. Appl. Math. Opt. 54, 369–399 (2006)

    Article  MATH  Google Scholar 

  10. de Bouard, A., Debussche, A.: The nonlinear Schrödinger equation with white noise dispersion. J. Funct. Anal. 259(5), 1300–1321 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Debussche, A., DiMenza, L.: Numerical simulation of focusing stochastic nonlinear Schrödinger equations. Physica D 162(3–4), 131–154 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Debussche, A., Tsutsumi, Y.: 1-D quintic nonlinear Schrödinger equation with white noise dispersion. J. Math. Pures et Appl. 96, 363–376 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Delfour, M., Fortin, M., Payre, G.: Finite difference solutions of a nonlinear Schrödinger equation. J. Comput. Phys. 44(2), 277–288 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Duboscq, R.: Analyse et simulations numériques d’équations de Schrödinger déterministes et stochastiques. Applications aux condensats de Bose-Einstein en rotation, thèse de doctorat. Université de Lorraine, Nancy (2013)

    Google Scholar 

  15. Faure, O.: Simulation du mouvement brownien et des diffusions, thèse de doctorat, Ecole Nationale des Ponts et Chaussées, (1992)

  16. Garnier, J.: Stabilization of dispersion managed solitons in random optical fibers by strong dispersion management. Opt. Commun. 206, 411–438 (2002)

    Article  Google Scholar 

  17. Gazeau, M.: Probability and pathwise order of convergence of a semidiscrete scheme for the stochastic Manakov equation. SIAM J. Numer. Anal. 52, 533–553 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kunze, M.: The singular perturbation limit of a variational problem from nonlinear fiber optics. Physica D 180(1–2), 108–114 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Marty, R.: On a splitting scheme for the nonlinear Schrödinger equation in a random medium. Commun. Math. Sci. 4(4), 679–705 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Milstein, G.N.: Approximate integration of stochastic differential equations. Theory Probab. Appl. 19, 583–588 (1974)

    MathSciNet  Google Scholar 

  21. Sanz-Serna, J.M.: Methods for the numerical solution of the nonlinear Schrödinger equation. Math. Comput. 43, 21–27 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Turitsyn, S.: Path-averaged chirped optical soliton in dispersion-managed fiber communication lines. Opt. Commun. 163, 122–158 (1999)

    Article  Google Scholar 

  23. Zharnitsky, V., Grenier, E., Jones, C., Turitsyn, S.: Stabilizing effects of dispersion management. Physica D 152/153, 794–817 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the ANR Project STOSYMAP (ANR-2011-BS01-015-03). It also benefits from the support of the french government “Investissements d’Avenir” program ANR-11-LABX-0020-01. The authors are grateful to R. Poncet for having noted a mistake in a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Debussche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belaouar, R., de Bouard, A. & Debussche, A. Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion . Stoch PDE: Anal Comp 3, 103–132 (2015). https://doi.org/10.1007/s40072-015-0044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-015-0044-z

Keywords

Navigation