Skip to main content
Log in

Quasi-one-dimensional transport in graphene under a magnetic field

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Examining the potential of monolayer graphene in quantum information processing, this study investigates electron transport characteristics of a ballistic graphene device featuring a quantum point contact (QPC) in a split-gate geometry for Quantum Hall (QH) interferometry. Utilizing the QPC in a split-gate geometry, we demonstrate robust control over electron transport, allowing selective transmission and reflection. Our experimental study involves careful examination of quantized conductance in a four-terminal geometry under varying magnetic fields and gate voltage, confirming the effectiveness of the QPC as an electron beam splitter. The experiment reveals quantized conductance steps in steps of \(4{e}^{2}/h\) in the absence and presence of a magnetic field, emphasizing stability of our quasi-1D transport channels. The tunable transmission probabilities of the QPC offer a versatile tool for manipulating electron transport, providing valuable insights for controlled quantum interferometric setups. The findings lay a foundation for future advancements in quantum information processing, opening avenues for topologically protected quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.K. Geim, I.V. Grigorieva, Nature 499, 419 (2013)

    Article  Google Scholar 

  2. M. Yankowitz, Q. Ma, P. Jarillo-Herrero, B.J. LeRoy, Nat. Rev. Phys. 1, 112 (2019)

    Article  Google Scholar 

  3. C. Stampfer, J. Güttinger, S. Hellmüller, F. Molitor, K. Ensslin, T. Ihn, Phys. Rev. Lett.Lett. 102, 056403 (2009)

    Article  ADS  Google Scholar 

  4. M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K. Ensslin, T. Ihn, New J. Phys. 12, 043054 (2010)

    Article  ADS  Google Scholar 

  5. M. Kim, J.-H. Choi, S.-H. Lee, K. Watanabe, T. Taniguchi, S.-H. Jhi, H.-J. Lee, Nat. Phys. 12, 1022 (2016)

    Article  Google Scholar 

  6. Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman, Nature 422, 415 (2003)

    Article  ADS  Google Scholar 

  7. E. Weisz, H.K. Choi, I. Sivan, M. Heiblum, Y. Gefen, D. Mahalu, V. Umansky, Science 344, 1363 (2014)

    Article  ADS  Google Scholar 

  8. K. Zimmermann, A. Jordan, F. Gay, K. Watanabe, T. Taniguchi, Z. Han, V. Bouchiat, H. Sellier, B. Sacépé, Nat. Commun.Commun. 8, 14983 (2017)

    Article  ADS  Google Scholar 

  9. A.A. Zibrov, E.M. Spanton, H. Zhou, C. Kometter, T. Taniguchi, K. Watanabe, A.F. Young, Nat. Phys. 14(9), 930–935 (2018)

    Article  Google Scholar 

  10. Y. Kim, A.C. Balram, T. Taniguchi, K. Watanabe, J.K. Jain, J.H. Smet, Nat. Phys. 15, 154 (2019)

    Article  Google Scholar 

  11. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Rev. Modern Phys. 80, 1083 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. C. Déprez, L. Veyrat, H. Vignaud, G. Nayak, K. Watanabe, T. Taniguchi, F. Gay, H. Sellier, B. Sacépé, Nat. Nanotechnol.Nanotechnol. 16, 555 (2021)

    Article  ADS  Google Scholar 

  13. Y. Ronen et al., Nat. Nanotechnol.Nanotechnol. 16, 563 (2021)

    Article  ADS  Google Scholar 

  14. L. Zhao et al., Nano Lett. Lett. 22, 9645 (2022)

    Article  ADS  Google Scholar 

  15. H. Fu, K. Huang, K. Watanabe, T. Taniguchi, M. Kayyalha, J. Zhu, Nano Lett. Lett. 23, 718 (2023)

    Article  ADS  Google Scholar 

  16. M. Kim, Curr. Appl. Phys.. Appl. Phys. 58, 74 (2024)

    Article  ADS  Google Scholar 

  17. P.J. Zomer, S.P. Dash, N. Tombros, B.J. van Wees, Appl. Phys. Lett.Lett. (2011). https://doi.org/10.1063/1.3665405

    Article  Google Scholar 

  18. L. Wang et al., Science 342, 614 (2013)

    Article  ADS  Google Scholar 

  19. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995), Cambridge Studies in Semiconductor Physics and Microelectronic Engineering

  20. Y.V. Sharvin, Sov. J. Exp. Theor. Phys. 21, 655 (1965)

    ADS  Google Scholar 

  21. B.J. van Wees, L.P. Kouwenhoven, H. van Houten, C.W.J. Beenakker, J.E. Mooij, C.T. Foxon, J.J. Harris, Phys. Rev. B 38, 3625 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kyung Hee University Research Grant in 2021 (KH-20211886) and National Research Foundation of Korea (NRF) grant [funded by the Korean government (MSIT), NRF- 2022R1C1C1003443].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minsoo Kim.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M. Quasi-one-dimensional transport in graphene under a magnetic field. J. Korean Phys. Soc. 84, 703–707 (2024). https://doi.org/10.1007/s40042-024-01029-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-024-01029-3

Keywords

Navigation