Skip to main content
Log in

General parametric dependence of atmospheric pressure argon plasmas

  • Original Paper - Fluids, Plasma and Phenomenology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Using a global model for atmospheric pressure plasma, we investigated general dependence of plasma properties on power density and plasma size. We built a global simulation for a pure argon cylindrical plasma and observed changes in plasma properties with the power density and plasma size. The study of the power dependence shows that the density of excited species is in general proportional to the power when the power density is low, whereas the density becomes saturated when the power density becomes high enough. These trends are explained by a generalized form of particle balance equation, implying that the same trends for reactive species density would emerge in various plasma conditions. For the plasma size dependence, the electron density increases and the electron temperature decreases for increasing plasma size. Both become saturated when the plasma size becomes large enough. These trends of electron density and temperature are explained by the relative change of the diffusive loss. Our simulation results give a useful insight into the tendency of plasma properties over a wide range of plasma parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the fndings of this study are available from the corresponding author.

References

  1. M. Ito et al., Plasma Process. Poly. 15, 1700073 (2017)

    Article  Google Scholar 

  2. M. Laroussi, IEEE Trans. Plasma Sci. 37, 714 (2009)

    Article  ADS  Google Scholar 

  3. K. Dieter et al., Pure Appl. Chem. 82, 1223–1237 (2010)

    Article  Google Scholar 

  4. T. Bernhardt et al., Oxid. Med. Cell. Longev. 2019, 3873928 (2019)

    Article  Google Scholar 

  5. J. Heinlin et al., J. Eur. Acad. Dermatol. Venereol. 25, 1–11 (2011)

    Article  Google Scholar 

  6. G. Daeschlein et al., IEEE Trans. Plasma Sci. 39(2), 815–821 (2011)

    Article  ADS  Google Scholar 

  7. Z. Xiong, J. Roe, T.C. Grammer, and D. B. Graves Plasma Process. Poly. 13(6), 588–597 (2016)

    Article  Google Scholar 

  8. A. Helmke et al., New J. Phys. 11, 11 (2009)

    Article  Google Scholar 

  9. G. Isbary et al., Br. J. Dermatol. 167(2), 404–410 (2012)

    Article  Google Scholar 

  10. G. Isbary et al., Br. J. Dermatol. 163, 78–82 (2010)

    Article  Google Scholar 

  11. A. Chuangsuwanich, T. Assadamongkol, D. Boonyawan, Int. J. Low. Extrem. Wounds 15(4), 313–319 (2016)

    Article  Google Scholar 

  12. J. Lee et al., IEEE Trans. Plasma Sci. 47(11), 4833–4839 (2019)

    Article  ADS  Google Scholar 

  13. C. Chutsirimongkol et al., Plasma Med. 4(1–4), 79–88 (2014)

    Article  Google Scholar 

  14. K.-H. Lee et al., Plasma Sci. Technol. 21, 125403 (2019)

    Article  ADS  Google Scholar 

  15. Y.-L. Men, P. Liu, X.-y Meng, Y.-X. Pan, Fire. Phys. Chem. 2, 214–220 (2022)

    Google Scholar 

  16. C. Saka, Crit. Rev. Anal. Chem. 48, 1–14 (2018)

    Article  Google Scholar 

  17. Y.-l Men, P. Liu, X. Peng, Y.-X. Pan, Sci. China Chem. 63, 1416–1427 (2020)

    Article  Google Scholar 

  18. D. Jariwala et al., Chem. Soc. Rev. 42, 2824–2860 (2013)

    Article  Google Scholar 

  19. I.A. Kinloch, Science 362, 547–553 (2018)

    Article  ADS  Google Scholar 

  20. F. Liu et al., J. Phys. Chem. C 118, 22760–22767 (2014)

    Article  Google Scholar 

  21. E.P. Stuckert, E.R. Fisher Sensor, Actuat. B: Chem. 208, 379–388 (2015)

    Article  Google Scholar 

  22. L. Xu et al., J. Energy Chem. 35, 24–29 (2019)

    Article  Google Scholar 

  23. S. Jin et al., Inter. J. Hydrog. Energy 45, 424–432 (2020)

    Google Scholar 

  24. Q. Li et al., J. Alloys Comp. 816, 152610 (2020)

    Article  Google Scholar 

  25. J. Zheng, X. Peng, Z. Wang, Phys. Chem. Chem. Phys. 23, 6591–6599 (2021)

    Article  Google Scholar 

  26. COMSOL, Inc. 2020 COMSOL Multiphysics Reference Manual (version 5.5). Available at www.comsol.com (accessed on September 10, 2020)

  27. S.Y. Jeong, W.J. Nam, J.K. Lee, G.S. Yun, J. Phys. D: Appl. Phys. 51, 454001 (2018)

    Article  ADS  Google Scholar 

  28. M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and materials processing, 2nd edn. (Wiley, New York, 2005)

    Book  Google Scholar 

  29. E.G. Thorsteinsson, J.T. Gudmundsson, Plasma Sources Sci. Technol. 19, 015001 (2010)

    Article  ADS  Google Scholar 

  30. Biagi-v7.1 database, private communication, www.lxcat.net, retrieved on November 8, 2021

  31. S. Yueh-Jaw, M.A. Biondi, Phys. Rev. A 17, 868 (1978)

    Article  ADS  Google Scholar 

  32. Quantemol-DB. Avalaible at https://quantemoldb.com/ (accessed on November10, 2019)

  33. A. Bultel, B. Van Ootegem, A. Bourdon, P. Vervisch, Phys. Rev. E 65, 046406 (2002)

    Article  ADS  Google Scholar 

  34. D.C. Lorents, Physica 82C, 19–26 (1976)

    Google Scholar 

  35. F. Kannari, A. Suda, M. Obara, T. Fujioka, IEEE J. Quantum Electron. 19, 1587–1600 (1983)

    Article  ADS  Google Scholar 

  36. J. Vlcek, J. Phys. D 22, 623 (1989)

    Article  ADS  Google Scholar 

  37. S.K. Lam, C.-E. Zheng, D. Lo, A. Demyanov, A.P. Napartovich, J. Phys. D 33, 242 (2000)

    Article  ADS  Google Scholar 

  38. M.N. Rolin, S.I. Shabunya, J.C. Rostaing, J.M. Perrin, Plasma Sources Sci. Technol. 16, 480 (2007)

    Article  ADS  Google Scholar 

  39. N. Kang, F. Gaboriau, O. Soo-ghee, A. Ricard, Plasma Sources Sci. Technol. 20, 035002 (2011)

    Article  ADS  Google Scholar 

  40. George M. Petrov, Carlos M (2013) Ferreira arXiv:1308.2593

  41. A. Bogaerts, R. Gijbels, J. Vlcek, J. Appl. Phys. 84, 121–136 (1998)

    Article  ADS  Google Scholar 

  42. R. Rincón, J. Munoz, M. Sáez, M.D. Calzada, Spectrochim. Acta B 81, 26–35 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Samsung Electronics Co., Ltd (Grant No. IO201209-07922-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunsu Yun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, S., Lee, J. & Yun, G. General parametric dependence of atmospheric pressure argon plasmas. J. Korean Phys. Soc. 82, 32–39 (2023). https://doi.org/10.1007/s40042-022-00686-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00686-6

Keywords

Navigation