Skip to main content
Log in

Air-stable ambipolarity of nanofibril polymer semiconductors in staggered organic field-effect transistors

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Air-stable ambipolar organic field-effect transistors (OFETs) are fabricated from the active layers of π-conjugated polymer and elastomer composites. Compared to the p-channel dominant charge transport behavior of pure donor–acceptor-type copolymer semiconductors, the polymer composites exhibited superior ambipolar charge transport characteristics with well-balanced and high electron and hole mobilities, both of more than 1.0 cm2/Vs. Moreover, these OFETs exhibited significantly improved air stabilities, particularly in the n-channel regime, which is because the encapsulation effect of the nanofibril conjugated polymers surrounded by the elastomer matrix efficiently suppressed electron trapping. At the optimal composition, spinodal decomposition of the constituent polymers is induced, forming fibrillar network structures during the solution casting and thermal annealing processes. These anisotropic polymer aggregates embedded in the elastomer matrix are induced to align in a direction parallel to the channel by directional printing techniques, such as off-centered spin coating and bar coating. This strategy of controlling the semiconductor film morphology is beneficial for the fabrication of high-performance and air-stable complementary-like electronic circuits. Furthermore, the embedded nanofibril morphology in a deformable elastomer can be widely used to realize stretchable optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.-J. Baeg, M. Caironi, Y.-Y. Noh, Adv. Mater. 25, 4210 (2013)

    Article  Google Scholar 

  2. K. Zhou, H. Dong, H.-L. Zhang, W. Hu, Phys. Chem. Chem. Phys. 16, 22448 (2014)

    Article  Google Scholar 

  3. R.J. Baker, CMOS: Circuit Design, Layout, and Simulation, 2nd edn. (IEEE Press, New Jersey, 2008)

    Book  Google Scholar 

  4. S. Smith, A. Oberholzer, K. Land, J.G. Korvink, D. Mager, Flex. Print. Electron. 3, 025002 (2018)

  5. H. Matsui, Y. Takeda, S. Tokito, Org. Electron. 75, 105432 (2019)

  6. C.B. Nielsen, M. Turbiez, I. McCulloch, Adv. Mater. 25, 1859 (2013)

    Article  Google Scholar 

  7. J. Yang, Z. Zhao, S. Wang, Y. Guo, Y. Liu, Chem 4, 2748 (2018)

    Article  Google Scholar 

  8. A. Facchetti, Chem. Mater. 23, 733 (2011)

    Article  Google Scholar 

  9. L. Shi, Y. Guo, W. Hu, Y. Liu, Mater. Chem. Front. 1, 2423 (2017)

    Article  Google Scholar 

  10. L.-L. Chua, J. Zaumseil, J.-F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, R.H. Friend, Nature 434, 194 (2005)

    Article  ADS  Google Scholar 

  11. V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, J.-L. Brédas, Chem. Rev. 107, 926 (2007)

  12. T. Kanagasekaran, H. Shimotani, R. Shimizu, T. Hitosugi, K. Tanigaki, Nat. Commun. 8, 999 (2017)

    Article  ADS  Google Scholar 

  13. H.F. Haneef, A.M. Zeidell, O.D. Jurchescu, J. Mater. Chem. C 8, 759 (2020)

    Article  Google Scholar 

  14. B.C.-K. Tee, A. Chortos, A. Berndt, A.K. Nguyen, A. Tom, A. McGuire, Z.C. Lin, K. Tien, W.-G. Bae, H. Wang, P. Mei, H.-H. Chou, B. Cui, K. Deisseroth, T.N. Ng, Z. Bao, Science 350, 313 (2015)

    Article  ADS  Google Scholar 

  15. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 499, 458 (2013)

    Article  ADS  Google Scholar 

  16. J. Xu, S. Wang, G.-J.N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V.R. Feig, J.W.F. To, S. Rondeau-Gagné, J. Park, B.C. Schroeder, C. Lu, J.Y. Oh, Y. Wang, Y.-H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J.B.-H. Tok, J.W. Chung, Z. Bao, Science 355, 59 (2017)

    Article  ADS  Google Scholar 

  17. C.H. Kim, Y. Bonnassieux, G. Horowitz, I.E.E.E. Electr, Dev. Lett. 32, 1302 (2011)

    Article  Google Scholar 

  18. Y. Li, S.P. Singh, P. Sonar, Adv. Mater. 22, 4862 (2010)

    Article  Google Scholar 

  19. L.H. Sperling, Introduction to Physical Polymer Science, 3rd edn. (Wiley-Interscience, New York, 2001)

    Google Scholar 

  20. C.M. Stafford, B.D. Vogt, C. Harrison, D. Julthongpiput, R. Huang, Macromolecules 39, 5095 (2006)

    Article  ADS  Google Scholar 

  21. J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994)

    Article  ADS  Google Scholar 

  22. C. Hellmann, N.D. Treat, A.D. Scaccabarozzi, J. Razzell Hollis, F.D. Fleischli, J.H. Bannock, J. de Mello, J.J. Michels, J.-S. Kim, N. Stingelin, J. Polym. Sci. Pt. B Polym. Phys. 53, 304 (2015)

  23. N.-K. Kim, S.-Y. Jang, G. Pace, M. Caironi, W.-T. Park, D. Khim, J. Kim, D.-Y. Kim, Y.-Y. Noh, Chem. Mater. 27, 8345 (2015)

    Article  Google Scholar 

  24. Y. Xu, T. Minari, K. Tsukagoshi, J.A. Chroboczek, G. Ghibaudo, J. Appl. Phys. 107, 114507 (2010)

    Article  ADS  Google Scholar 

  25. B. Kang, W.H. Lee, K. Cho, A.C.S. Appl, Mater. Interfaces 5, 2302 (2013)

    Article  Google Scholar 

  26. Y. Yuan, G. Giri, A.L. Ayzner, A.P. Zoombelt, S.C.B. Mannsfeld, J. Chen, D. Nordlund, M.F. Toney, J. Huang, Z. Bao, Nat. Commun. 5, 3005 (2014)

    Article  ADS  Google Scholar 

  27. M. Pandey, N. Kumari, S. Nagamatsu, S.S. Pandey, J. Mater. Chem. C 7, 13323 (2019)

    Article  Google Scholar 

  28. P. Kjeldsen, Wat. Res. 27, 121 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Pukyong National University Grant (2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Jun Baeg.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JG., Park, JW. & Baeg, KJ. Air-stable ambipolarity of nanofibril polymer semiconductors in staggered organic field-effect transistors. J. Korean Phys. Soc. 79, 468–476 (2021). https://doi.org/10.1007/s40042-021-00264-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00264-2

Keywords

Navigation