Skip to main content
Log in

Design and Development of Wound Dressing by Using Commercial Antiseptic Liquid

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

Modern wound dressings are expensive for the majority of the people of 3rd world countries. There is a possibility to design and develop a proper and low-cost dressing that will have the properties of modern wound dressing. The aim of this research work is to develop a low-cost wound dressing with the properties of an antibacterial, absorbent, non-adherent, and capable to maintain a moist environment around the wound. The commercial antiseptics Dettol and Savlon were applied with different concentrations and M: L ratios on the cotton gauze fabric by pad dry method and the ZOI (zone of inhibition) was evaluated against E. coli. The antibacterial behavior exhibits even after one year. An absorbent layer of cotton fabrics, cotton fiber, and viscous fiber are used to assess their ability to absorb liquid. The absorbency and retention value of the absorbing layers were evaluated in g/g and g/cm2. In a non-adherent layer, the gauze fabric was dip-coated using PVA (poly (vinyl alcohol)) polymer solution using a padding mangle. The peel-off force of PVA-coated fabrics was measured using a gelatin wound exudates model and UTM (universal testing machine). The obtained antibacterial and absorbency results were compared with commercial wound dressing and have shown promising results. The PVA-coated fabric was non-adherent to the wound and maintain a moist environment on the wound surface. So, the developed PVA-coated antibacterial wound dressing with cotton fiber absorbent layer can be used as an alternative to branded wound dressing for the poor people of third world countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. G.S. Lazarus, D.M. Cooper, D.R. Knighton, D.J. Margolis, R.E. Percoraro, G. Rodeheaver, M.C. Robson, Wound Repair Regen. 2, 165 (1994)

    Article  Google Scholar 

  2. T. Velnar, T. Bailey, V. Smrkolj, J. Int. Med. Res. 37, 1528 (2009)

    Article  Google Scholar 

  3. S. Dhivya, V.V. Padma, E. Santhini, Biomed. 5, 24 (2015)

    Article  Google Scholar 

  4. Y. Liu, T. Li, Y. Han, F. Li, Y. Liu, Curr. Opin. Biomed. Eng. 17, 100247 (2021)

    Article  Google Scholar 

  5. E. Rezvani Ghomi, S. Khalili, S. Nouri Khorasani, R. Esmaeely Neisiany, S. Ramakrishna, J. Appl. Polym. Sci. 136, 47738 (2019)

    Article  Google Scholar 

  6. S. Jirawitchalert, S. Mitaim, C.-Y. Chen, N. Patikarnmonthon, Int. J. Biomater. 2022, 1–12 (2022)

    Article  Google Scholar 

  7. E.B. Tpyшкин, H.B. Ceнявинa, ДA. Caxapoв, A.Л Pycaнoв, У Mapкc, A.Г Toнeвицкий, Биoтexнoлoгия 1, 51 (2013)

    Google Scholar 

  8. J. Fong, F. Wood, Int. J. Nanomedicine 1, 441 (2006)

    Article  Google Scholar 

  9. A. Bal-öztürk, B. Özkahraman, E. Tamahkar, E. Alarçin, J. Biomed. Mater. Res. Part B Appl. Biomater. 109, 703 (2020)

    Article  Google Scholar 

  10. S.R. Nussbaum, M.J. Carter, C.E. Fife, J. DaVanzo, R. Haught, M. Nusgart, D. Cartwright, Value Heal. 21, 27 (2018)

    Article  Google Scholar 

  11. G. Schultz, G.T.K. Harding, K. Carville, P.N. Chadwick, Z.E.H. Moore, M. Marguerite, P. Steven, Wounds Int. (2019).

  12. J.P.E. Junker, R.A. Kamel, E.J. Caterson, E. Eriksson, Adv. Wound Care 2, 348 (2013)

    Article  Google Scholar 

  13. L.J. Borda, F.E. Macquhae, R.S. Kirsner, Curr. Dermatol. Rep. 5, 287 (2016)

    Article  Google Scholar 

  14. M. Waring, S. Bielfeldt, M. Brandt, Wounds 5(3), 22–31 (2009)

    Google Scholar 

  15. K.P. Chellamani, D. Veerasubramanian, R.S.V. Balaji, J. Acad. Indus. Res. 1, 778 (2013)

    Google Scholar 

  16. E.H. Portella, D. Romanzini, C.C. Angrizani, S.C. Amico, A.J. Zattera, Mater. Res. 19, 542 (2016)

    Article  Google Scholar 

  17. M. Miraftab, A.N. Saifullah, A. Çay, J. Mater. Sci. 50, 1943 (2015)

    Article  Google Scholar 

  18. ASTM-E2922, ASTM Int. 1 (2015).

  19. C. He, X. Liu, Z. Zhou, N. Liu, X. Ning, Y. Miao, Y. Long, T. Wu, X. Leng, Mater. Sci. Eng. C 128, 112342 (2021)

    Article  Google Scholar 

  20. A.M. West, P.J. Teska, C.B. Lineback, H.F. Oliver, Antimicrob. Resist. Infect. Control 7, 1 (2018)

    Google Scholar 

  21. S.M. Shang, in Process Control, in Textile Manufacturing. ed. by A. Majumdar, A. Das, R. Alagirusamy, V.K. Kothari (Woodhead Publishing Limited, Cambridge, 2012), pp.300–338

    Google Scholar 

  22. P. Szweda, G. Gorczyca, R. Tylingo, J. Wound Care 27, 320 (2018)

    Article  Google Scholar 

  23. C.E. Bradshaw, Biosci. Horizons 4, 61 (2011)

    Article  Google Scholar 

  24. S. Rajendran, S.C. Anand, J. Wound Care 11, 191 (2002)

    Article  Google Scholar 

  25. S.M. Lee, I.K. Park, Y.S. Kim, H.J. Kim, H. Moon, S. Mueller, H. Arumugam, Y.I.L. Jeong, Biomater. Res. 20, 1 (2016)

    Article  Google Scholar 

  26. M. Stankovská, J. Gigac, M. Fišerová, E. Opálená, Wood Res. 64, 261 (2019)

    Google Scholar 

  27. M.A. Rousselle, D.P. Thibodeaux, A.D. French, Text. Res. J. 75, 177 (2005)

    Article  Google Scholar 

  28. P.D. Dubrovski, M. Brezocnik, Fibers Polym. 17, 801 (2016)

    Article  Google Scholar 

  29. K.D. Park, X. Wang, J.Y. Lee, K.M. Park, S.M. Zhang, I. Noh, Biomater. Res. 20, 1 (2016)

    Article  Google Scholar 

  30. R. Dhiman, R. Chattopadhyay, J. Text. Inst. 112, 996 (2021)

    Article  Google Scholar 

  31. A. Nazir, T. Hussain, F. Ahmad, S. Faheem, Autex. Res. J. 14, 39 (2014)

    Article  Google Scholar 

  32. M.M. Kamel, H.M. Helmy, H.M. Meshaly, A. Abou-Okeil, J. Text. Sci. Eng. 05 (2015)

  33. S. Shyna, A.S. Krishna, P.D. Nair, L.V. Thomas, Int. J. Biol. Macromol. 150, 129 (2020)

    Article  Google Scholar 

  34. S. Cichosz, A. Masek, Mater. Basel. 13, 1 (2020)

    Google Scholar 

  35. X. Zhang, FTIR spectrum analysis tool (Xin’s page at website of University of Maryland, College Park, 2022)

    Google Scholar 

  36. M.T. Khorasani, A. Joorabloo, A. Moghaddam, H. Shamsi, Z. MansooriMoghadam, Int. J. Biol. Macromol. 114, 1203 (2018)

    Article  Google Scholar 

Download references

Funding

This study received no specific fund from any agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Ghosh.

Ethics declarations

Competing interests

The authors declare that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Balasubramaniam, K. & Das, P. Design and Development of Wound Dressing by Using Commercial Antiseptic Liquid. J. Inst. Eng. India Ser. E 104, 51–60 (2023). https://doi.org/10.1007/s40034-022-00256-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-022-00256-2

Keywords

Navigation